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Preface

Remote Sensing for Urbanization in Tropical 
and Subtropical Regions—Why and What Matters?

The twenty-first century is the first “urban century” according to the United 
Nations Development Program. Although urbanized land currently covers 
only approximately 2% of global land area, more than half of the world’s pop-
ulation live in the urban environment. By 2030, urbanized areas will expand 
to provide homes for 81% of the world’s population, with the majority of the 
population increase coming from developing countries. Thus, there is a rap-
idly growing need for technologies that will allow for the monitoring of the 
world’s urban assets and management of the exposure to natural and man-
made risks. This need is further driven by increased concern over global 
climate change. Geographically, most developed countries are located in 
temperate regions, whereas developing countries are located in the tropical 
and subtropical regions. The continued urbanization in the tropical and sub-
tropical regions has an important implication in biodiversity, the well-being 
of tropical rainforest ecosystem, and global climate change.  

A characteristic change associated with urbanization is the expansion of 
impervious surface. Satellite remote sensing provides the only viable option 
to detect and monitor impervious surface from space in an efficient, afford-
able, and timely manner. Numerous previous studies have utilized satellite 
imagery of different spatial resolutions to estimate and map impervious sur-
face (Weng 2012). The nightlight derived from the DMSP OLS and MODIS 
land cover products was used to produce the global urban dataset at 1 km 
resolution (Elvidge et al. 1997; Imhoff et al. 1997; Friedl et al. 2002; Schneider 
et al. 2003; Zhou et al. 2014). Global urban maps at coarse resolution can cover 
large areas and also be updated frequently. However, due to the complex-
ity of urban landscapes and inherent resolution of human activities, coarse-
resolution global urban maps are difficult to use for many applications at 
local to regional scales (Small 2003). Medium-resolution satellite imagery 
possesses unique advantages in mapping urban areas more accurately. 
Sensors on board the Landsat series of satellites have been providing Earth 
observation data continuously since the early 1970s (Townshend et al. 1991; 
Loveland and Shaw 1996), which have been applied in numerous urbaniza-
tion studies at the local, regional, and continental scales (Seto et al. 2002; 
Jantz et al. 2005; Schneider et al. 2005). As part of the National Land Cover 
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Dataset, impervious surface maps were produced for the United States from 
Landsat data for 2006 and 2011 (Xian et al. 2011). However, the majority of 
previous urban land cover and land use studies tended to focus on a single 
image at one time (Schneider et al. 2003). Applications using Landsat data are 
surging due to the availability of free Landsat data from the US Geological 
Survey since 2008 (Woodcock et al. 2008). New methods and techniques are 
being developed to utilize abundant medium-resolution images and pro-
duce consistent maps for monitoring urban expansion (Sexton et al. 2013; 
Zhu and Woodcock 2014). The Landsat time-series data will also allow for 
more detailed studies to determine the impacts of urbanization on energy, 
water, carbon cycles, vegetation phenology, and surface climate (Weng and 
Fu 2014). 

Continuity of medium-resolution data is critical for monitoring land use 
and land cover changes worldwide. However, the failure of the Scan-Line 
Corrector on board the Landsat 7 satellite in 2003 caused a loss of 25% of 
the data toward the edges of each image; Landsat 5 suspended operations 
in November 2011. Although Landsat-8 OLI data was available after 2013, 
maintaining the continuity of Landsat-like data is precarious. This situation 
highlights the need to combine the capabilities of existing and future inter-
national sensors to provide a more robust observational record (Weng et al. 
2014). When considering international satellite missions such as Sentinel, 
CBERS-2, and IRS, the rich source of medium-resolution remotely sensed 
data suggests that we may now move urban mapping from the local and 
regional, to the global scale. Despite the great potential for the combined 
use of existing and future medium-resolution imagery, many issues deserve 
to be studied further, including cross-sensor comparison and normalization 
(Schroeder et al. 2006; Wulder et al. 2008), multisensor fusion (Gao et al. 2006; 
Weng et al. 2014), and utilization of full suite of Landsat-like data for any 
location and date (Powell et al. 2007; Gao et al. 2012). Significant challenges 
remain for mapping urbanization over large areas, in terms of validation and 
systematically processing data from multiple times, various sources/instru-
ments, and different seasons (Gao et al. 2012). 

In the tropical and subtropical regions, remote sensing of urban environ-
ment faces more challenges than in the temperate zones due to all-year-
round cloudy and rainy climate conditions, complex hydrological systems 
that often display a strong seasonal change in water surface area, and 
vegetation phenology and morphological and species complexity. Optical 
data frequently show their weakness in remote sensing in the tropical and 
subtropical regions, which prompts researchers to use different sources of 
imagery from microwave remote sensing. Synthetic aperture radar (SAR), 
for instance, was widely employed previously to provide complementary 
information to optical imagery because it works on all-weather conditions, 
free from the influence of clouds and rains. Previous studies show that SAR 
is very sensitive to ground surface roughness, shape, structure, and dielec-
tric properties of illuminated ground targets (Henderson and Xia 1997). 
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However, more research is needed to understand the methods of feature 
extraction, selection of fusion level, and classification algorithm when optical 
and SAR image data are combined to estimate and map impervious surface 
(Jiang et al. 2009; Yang et al. 2009; Zhang et al. 2012, 2014).

In December 2013, Dr. Hongsheng Zhang from the Chinese University 
of Hong Kong contacted me and expressed an interest in publishing an 
authored book in the Taylor & Francis Group’s Remote Sensing Applications 
Series. Upon reading the proposal, I fully agreed on the scope and objectives 
as well as the table of contents. I served in Dr. Zhang’s dissertation committee 
and have been closely watching his professional growth over the past several 
years. I am amazed by his aggression in research and his production of peer-
refereed articles. The outlets of his publications include nearly all reputed 
remote sensing journals, and his work has been funded by the Hong Kong 
Research Council and the China Natural Science Foundation. I am pleased to 
have such an opportunity to introduce his work to the readers of CRC Press. 
By carefully selecting several case studies in different continents, this book 
illustrates various recent methods in the synergistic use of optical and SAR 
data for estimating and mapping of impervious surface for the tropical and 
subtropical cities and answers two fundamental science questions: (1) why 
SAR data are able to improve the accuracy of the estimation, and (2) how to 
optimize the fusion between optical and SAR data in order to achieve accu-
rate estimation. The findings of this research shed important light into other 
aspects of urban as well as environmental remote sensing. 

References

Elvidge, C. D., K. E. Baugh, E. A. Kihn, H. W. Kroehl, and E. R. Davis. 1997. Mapping 
city lights with nighttime data from the DMSP Operational Linescan System. 
Photogrammetric Engineering & Remote Sensing 63(6):727–734.

Friedl, M. A., D. K. McIver, J. C. F. Hodges, X. Zhang, D. Muchoney, A. H. Strahler, 
C. E. Woodcock, S. Gopal, A. Schnieder, A. Cooper, A. Baccini, F. Gao, and C. B. 
Schaaf. 2002. Global land cover from MODIS: Algorithms and early results. 
Remote Sensing of Environment 83:287–302.

Gao, F., E. B. de Colstoun, R. Ma, Q. Weng, J. G. Masek, J. Chen, Y. Pan, and C. Song. 
2012. Mapping impervious surface expansion using medium-resolution satellite 
image time series: A case study in the Yangtze River Delta, China. International 
Journal of Remote Sensing 33(24):7609–7628.

Gao, F., J. Masek, M. Schwaller, and H. Forrest. 2006. On the blending of the Landsat 
and MODIS surface reflectance: Predict daily Landsat surface reflectance. IEEE 
Transactions on Geoscience and Remote Sensing 44(8):2207–2218.

Henderson, F. M., and Z. G. Xia. 1997. SAR applications in human settlement detec-
tion, population estimation and urban land use pattern analysis: A status 
report. IEEE Transactions on Geoscience and Remote Sensing 35:79–85.

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0034-4257%2802%2900078-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTGRS.2006.872081
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTGRS.2006.872081
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01431161.2012.700424
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01431161.2012.700424
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F36.551936


xx Preface

Imhoff, M. L., W. T. Lawrence, D. C. Stutzer, and C. D. Elvidge. 1997. A technique 
for using composite DMSP/OLS “city lights” satellite data to map urban areas. 
Remote Sensing of Environment 61:361–370.

Jantz, P., S. Goetz, and C. Jantz. 2005. Urbanization and the loss of resource lands in 
the Chesapeake Bay Watershed. Environmental Management 36:808–825.

Jiang, L. M., M. S. Liao, H. Lin, H., and L. M. Yang. 2009. Synergistic use of optical 
and InSAR data for urban impervious surface mapping: A case study in Hong 
Kong. International Journal of Remote Sensing 30:2781–2796.

Loveland, T. R., and D. M. Shaw. 1996. Multi-resolution land characterization: 
Building collaborative partnerships, in GAP Analysis: A Landscape Approach 
to Biodiversity Planning. In: American Society for Photogrammetry and Remote 
Sensing, J. M. Scott, T. H. Tear, and F. W. Davis, eds., 79–85. Bethesda, Maryland.

Powell, S. L., D. Pflugmacher, A. A. Kirschbaum, Y. Kim, and W. B. Cohen. 2007. 
Moderate resolution remote sensing alternatives: A review of Landsat-like sen-
sors and their applications. Journal of Applied Remote Sensing 1:012506.

Schneider, A., M. A. Friedl, D. K. McIver, and C. E. Woodcock. 2003. Mapping urban 
areas by fusing multiple sources of coarse resolution remotely sensed data. 
Photogrammetric Engineering & Remote Sensing 69:1377–1386.

Schneider, A., K. C. Seto, and D. R. Webster. 2005. Urban growth in Chengdu, Western 
China: Application of remote sensing to assess planning and policy outcomes. 
Environment and Planning B-Planning & Design 32(3):323–345.

Schroeder, T. A., W. B. Cohen, C. Song, M. J. Canty, and Z. Yang. 2006. Radiometric 
correction of multi-temporal Landsat data for characterization of early suc-
cessional forest patterns in western Oregon. Remote Sensing of Environment 
103:16–26.

Seto, K. C., C. E. Woodcock, C. Song, X. Huang, R. K. Kaufmann, and J. Lu. 2002. 
Measuring landuse change with Landsat TM: Evidence from Pearl River Delta. 
International Journal of Remote Sensing 23:1985–2004. 

Sexton, J. O., X.-P. Song, C. Huang, S. Channan, M. E. Baker, and J. R. Townshend. 
2013. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan 
region from 1984 to 2010 by annual, Landsat-based estimates of impervious 
cover. Remote Sensing of Environment 129:42–53.

Small, C. 2003. High spatial resolution spectral mixture analysis of urban reflectance. 
Remote Sensing of Environment 88:170–186.

Townshend, J., C. Justice, W. Li, C. Gurney, and J. McManus. 1991. Global land cover 
classification by remote sensing: Present capabilities and future possibilities. 
Remote Sensing of Environment 35:243–255.

Weng, Q. 2012. Remote sensing of impervious surfaces in the urban areas: 
Requirements, methods, and trends. Remote Sensing of Environment 117(2):34–49.

Weng, Q., and P. Fu. 2014. Modeling annual parameters of land surface tempera-
ture variations and evaluating the impact of cloud cover using time series of 
Landsat TIR data. Remote Sensing of Environment 140:267–278.

Weng, Q., P. Fu, and F. Gao. 2014. Generating daily land surface temperature at 
Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of 
Environment 145:55–67.

Weng, Q., T. Esch, P. Gamba, D. A. Quattrochi, and G. Xian. 2014. Global urban obser-
vation and information: GEO’s effort to address the impacts of human settle-
ments. In Weng, Q. ed. Global Urban Monitoring and Assessment through Earth 
Observation, Chapter 2, 15–34. Boca Raton, FL: CRC Press/Taylor and Francis.

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2014.02.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0034-4257%2897%2900046-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2014.02.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1117%2F1.2819342
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0034-4257%2891%2990016-Y
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01431160802555838
http://www.crcnetbase.com/action/showLinks?crossref=10.1068%2Fb31142
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01431160110075532
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2013.09.002
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2003.04.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs00267-004-0315-3
http://www.crcnetbase.com/action/showLinks?crossref=10.14358%2FPERS.69.12.1377
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2011.02.030
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2006.03.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2012.10.025


xxiPreface

Woodcock, C. E., R. Allen, M. Anderson, A. Belward, R. Bindschadler, W. Cohen, 
F. Gao, S. N. Goward, D. Helder, E. Helmer, R. Nemani, L. Oreopoulos, J. Schott, 
P. S. Thenkabail, E. F. Vermote, J. Vogelmann, M. A. Wulder, and R. Wynne. 
2008. Free access to Landsat imagery. Science 320:1011–1011.

Wulder, M. A., C. R. Butson, and J. C. White. 2008. Cross-sensor change detection 
over a forested landscape: Options to enable continuity of medium spatial reso-
lution measures. Remote Sensing of Environment 112(3):796–809.

Xian, G., C. Homer, J. Dewitz, J. Fry, N. Hossain, and J. Wickham. 2011. The change 
of impervious surface area between 2001 and 2006 in the conterminous United 
States. Photogrammetric Engineering & Remote Sensing 77(8):758–762.

Yang, L. M., L. M. Jiang, H. Lin, and M. S. Liao. 2009. Quantifying sub-pixel urban 
impervious surface through fusion of optical and InSAR imagery. GIScience & 
Remote Sensing 46:161–171.

Zhang, H. S., Y. Zhang, and H. Lin. 2012. A comparison study of impervious surfaces 
estimation using optical and SAR remote sensing images. International Journal 
of Applied Earth Observation and Geoinformation 18:148–156.

Zhang, Y., H. S. Zhang, and H. Lin. 2014. Improving the impervious surface esti-
mation with combined use of optical and SAR remote sensing images. Remote 
Sensing of Environment 141:155–167.

Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson, and M. Imhoff. 2014. A 
cluster-based method to map urban area from DMSP/OLS nightlights. Remote 
Sensing of Environment 147:173–185.

Zhu, Z., and C. E. Woodcock. 2014. Automated cloud, cloud shadow, and snow detec-
tion in multitemporal Landsat data: An algorithm designed specifically for 
monitoring land cover change. Remote Sensing of Environment 152:217–234.

Qihao Weng
Indiana State University, Terre Haute, Indiana, USA

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jag.2011.12.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jag.2011.12.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2007.06.013
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2014.03.004
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2014.03.004
http://www.crcnetbase.com/action/showLinks?crossref=10.2747%2F1548-1603.46.2.161
http://www.crcnetbase.com/action/showLinks?crossref=10.2747%2F1548-1603.46.2.161
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2013.10.028
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2013.10.028
http://www.crcnetbase.com/action/showLinks?crossref=10.1126%2Fscience.320.5879.1011a
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.rse.2014.06.012


  



xxiii

Acknowledgments

This study is mainly supported by the National Natural Science Foundation 
of China (41401370). It is jointly supported by the National Basic Research 
Program of China (2015CB954103), the General Research Fund (CUHK 
457212), and the National Natural Science Foundation of China (41171288). 
The University of Pavia and the German Aerospace Agency (DLR) are greatly 
appreciated for providing the TerraSAR-X data. Landsat TM/ETM+ data pro-
vided by the US Geological Survey are also greatly appreciated. The authors 
also thank the Institute of Space and Earth Information Science (ISEIS)/The 
Chinese University of Hong Kong (CUHK) for providing ENVISAT ASAR 
data. Special thanks to colleagues from the University of Pavia, Indiana State 
University, ISEIS/CUHK, and the Shenzhen Research Institute/CUHK for 
their valuable discussion and comments toward our study. The authors also 
thank three anonymous reviewers for providing critical comments and sug-
gestions that have improved the original manuscript.

  



  



xxv

List of Abbreviations

ANN	 artificial neural network
BIS	 bright impervious surface
BP	 backpropagating
BS	 bare soil
CART	 classification and regression tree
CF	 color feature
DEM	 digital elevation model
DGPS	 differential GPS
DIS	 dark impervious surface
DISS	 dissimilarity
DOP	 digital orthophoto
DT	 decision tree
ENT	 entropy
ERM	 empirical risk minimization
FOV	 field of view
GCP	 ground control point
GLCM	 gray-level co-occurrence matrix
HOM	 homogeneity
HSI	 hue-saturation-intensity
HSR	 humid subtropical region
HSV	 hue-saturation-value
ISE	 impervious surface estimation
ISODATA	iterative self-organizing data analysis technique algorithm
Kappa	 Kappa coefficient
LULC	 land use/land cover
MLC	 maximum likelihood classifier
MLP	 multilayer perceptron
MNF	 maximum noise fraction
NDISI	 normalized difference impervious surfaces index
NDVI	 normalized difference vegetation index
NDWI	 normalized difference water index
NPS	 nonpoint source
NSMA	 normalized spectral mixture analysis
NVT	 Neuromorphic Vision Toolkit
OA	 overall accuracy
OOB	 out-of-bag
PRD	 Pearl River Delta
PRE	 Pearl River Estuary
RF	 random forest
RGB	 red-green-blue

  



xxvi List of Abbreviations

RMSE	 root-mean-square error
RS	 remote sensing
SAN	 shape-adaptive neighbourhood
SAR	 synthetic aperture radar
SEZ	 special economic zone
SF	 spectral feature
SLC	 scan line corrector
SMA	 spectral mixture analysis
SRM	 structural risk minimization
SVM	 support vector machine
TF	 texture feature
TSX	 TerraSAR-X
UHI	 urban heat island
UTM	 Universal Transverse Mercator
VIS	 vegetation-impervious surface-soil
VSA	 variable source areas
WGS84	 World Geodetic System 1984

  



1

1
Introduction

1.1 � Research Background

Dramatic urbanization processes have occurred in many regions around the 
world and thus have created a number of metropolises, especially in tropical 
and subtropical regions. One of the most important implications of this occur-
rence is that a large portion of impervious surface is the result of this rapid 
urbanization process. Impervious surfaces have been widely recognized as 
the most important land cover type in urban areas, and they serve as a key 
environmental indicator of many environmental issues such as urban flood-
ing, urban climate, water pollution, and air pollution (Arnold and Gibbons 
1996; Hu and Weng 2011). Moreover, impervious surfaces are also reported 
to be a significant factor in many socioeconomic studies, including urban 
growth, estimation of population distribution, and variation of housing prices 
(Wu and Murray 2003; Wu and Yuan 2007; Yang et al. 2003a; Yu and Wu 2004).

Most developed countries and cities are located in temperate regions, and 
therefore most previous studies about impervious surface estimation (ISE) 
using remote sensing are focused on temperate urbanized areas. However, 
many developing countries, such as China and India, have been undergoing 
dramatic urbanization processes in the past decades. Moreover, unlike in 
developed countries, urbanization planning and management in these newly 
developed cities are not as advanced as those in developed countries, conse-
quently causing various environmental problems such as air pollution, water 
pollution, urban flooding, and urban heat islands. In order to monitor the 
urbanization process in these areas, remote sensing can be seen as a technology 
with great potential that has been proven in many previous studies in temper-
ate regions. An accurate estimation of impervious surfaces in this region will 
have significant impacts in the long term to (1) provide better and more precise 
monitoring of impervious surface changes over time, (2) provide more precise 
information available for environmental models, which will foster the design 
of new models and improvement of existing ones, and (3) provide useful infor-
mation to urban planners regarding locations where impervious surface frac-
tion is too large, which areas are more prone to environmental problems, and 
so forth, leading to more eco-friendly urban planning.



2 Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

One of the key instruments for mapping large areas of impervious sur-
faces is satellite remote sensing. However, accurate mapping of impervious 
surfaces remains a challenging task due to their diversity and the diversity 
of urban land covers, and thus impervious surfaces are often easily confused 
with other land cover types in terms of spectral signatures. For instance, 
bright impervious surfaces are often mixed with dry soils and sands, while 
dark impervious surfaces tend to be confused with shade and water. In order 
to reduce the spectral confusion, synthetic aperture radar (SAR) has been 
widely reported to provide complementary information. SAR works in all 
weather and time conditions, and thus is free from the influence of cloud 
occurrence. Moreover, existing research shows that SAR is very sensitive to 
ground surface roughness, shape, structure, and dielectric properties of illu-
minated ground targets, and thus can provide complementary information 
to optical data (Henderson and Xia 1997). Therefore, these characteristics and 
information should be of great benefit to separate different ground targets 
when their spectral signatures are similar in the visible and near-infrared 
wavelength range, as with bright impervious surfaces and dry soils/sands, 
or dark impervious surfaces and shade/water.

Unfortunately, in tropical and subtropical areas, remote sensing of imper-
vious surfaces is much more complicated than in temperate urban areas due 
to several significant geographical factors:

	 1.	Complex meteorological environment. Compared to mid- and high-
altitude areas, the tropical and subtropical region, due to its special 
monsoon climate, presents a year-round cloudy and rainy climate 
feature with a very long rainy season and rich precipitation even in 
a short-term dry season. Natural disasters, such as typhoons, earth-
quakes, tsunamis, and floods, also occur frequently in this region 
because of its special meteorological environment. Therefore, the 
use of optical remote sensing would be greatly limited in tropical 
and subtropical areas. Microwave remote sensing, with its ability to 
penetrate clouds and operate in all weather conditions, has distinc-
tive advantages in this region.

	 2.	Complex hydrological environment. In tropical and subtropical areas, there 
are many developed and complex river systems and lakes in which the 
change of water flow and water surface area show obvious seasonal 
features, such as the big differences in variable source areas (VSAs) in 
rainy and dry seasons. This typical hydrological environment makes 
it difficult for remote sensing application. On remote sensing images, 
complex and discrete water surfaces can easily lead to the phenom-
enon of serious spectral confusion with other types of surface objects.

	 3.	Complex topographic environment. Because of severe weathering and 
physical and chemical erosion, the topography in tropical and sub-
tropical areas is complex, such as the distinctive Danxia landform, 
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karst landform, red weathering crusts, and krasnozem. All these 
complex topographies will result in problems of obvious shadows 
and buried structures on remote sensing images, which become a 
challenge in remote sensing monitoring. As well, complex topogra-
phy and meteorological and hydrological environments are impor-
tant factors of various natural disasters, such as karsts, landslides, 
and debris flows, which make it more difficult for remote sensing 
applications.

	 4.	Complex ecological environment. Compared to a temperate zone, tropi-
cal and subtropical areas have the advantages of high ecological 
diversity and richer species resources. However, these diverse eco-
logical features also make it difficult for the application of remote 
sensing. Low precision in remote sensing monitoring will occur 
because different species will very likely be mixed in with each other 
in remote sensing images. For example, surveys on ecological diver-
sity using remote sensing techniques face many challenges due to the 
large number of species, such as the change detection of biodiversity 
in the mangrove forest that increasingly attracts public concern.

Moreover, in suburban-rural areas, where more natural and man-made fea-
tures are mixed, ISE becomes more complicated due to the seasonal changes 
of vegetation. These seasonal effects have been identified previously (Weng 
et al. 2009; Wu and Yuan 2007), but an accurate ISE that would disprove any 
disruptive effects has yet to be designed.

This book therefore aims to (1) provide a systematic review of ISE methods 
using remote sensing (Chapters 1 and 2), by summarizing the environmen-
tal and socioeconomic impacts of impervious surfaces, the methods of ISE 
using remote sensing technology, and challenges of remote sensing in tropi-
cal and subtropical regions; (2) investigate the impact of climate zone and its 
seasonal effects on ISE (Chapter 4); (3) develop a framework for impervious 
surface estimation using optical and SAR image data (Chapters 3, 5, and 6); 
and (4) include an in-depth case study in rapidly urbanizing tropical and 
subtropical cities including Shenzhen, Mumbai, and Sao Paulo (Chapter 7).

1.2 � Significance of Impervious Surface

As a key indicator of environmental studies, impervious surfaces have been 
considered extensively in terms of their environmental impacts (Arnold and 
Gibbons 1996). Built-up areas often have impervious surfaces, including 
pavement (roads, streets, highways, etc.) and rooftops, where precipitation 
water cannot infiltrate directly into the soil. Urban impervious surfaces can 
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have a great impact on the urban solar energy balance (Weng et al. 2006), air 
quality, nonpoint source water pollution, storm runoff processes (Hurd and 
Civco 2004; Weng 2001), and so forth. In addition, impervious surfaces have 
also been identified as a key factor in many socioeconomic studies, such as 
the measurement of urban growth, the estimation of population distribu-
tion, and variation of housing prices (Wu and Murray 2003; Wu and Yuan 
2007; Yang et al. 2003a; Yu and Wu 2004).

1.2.1 � Environmental Significance

1.2.1.1 � Hydrological Impacts

Impervious surfaces characterize all urbanized land and not only change 
the water cycles and the heat balance between the earth and the solar source, 
but also the living styles of people in different countries. As one of the results 
of these physical and social changes, impervious surfaces have had a sig-
nificant impact on the environment, leading to a number of environmental 
issues all over the world. Regarding hydrological impacts, impervious sur-
faces change both the quantity and the quality of the watershed.

In a natural land surface, the general water cycle among hydrosphere, lith-
osphere, and atmosphere is as follows: water comes from the atmosphere 
with rainfall, infiltrates into the soils, and finally runs into rivers or under-
ground water systems. During this process, surface runoff may be gener-
ated depending on the intensity of the rainfall, types of land covers, and soil 
types. Evaporation may also occur in different amounts depending on the 
land cover types and land surface temperature. However, in an urbanized 
surface that is covered by impervious materials, the water cycle changes dra-
matically. Rainfall water cannot infiltrate into the soil and is diverted into a 
drainage system. This water is actually surface runoff, and thus the runoff is 
greatly increased. All the rainwater from the drainage system is then trans-
ported into a river.

These changes to the water cycle would have significant impacts on the 
watershed in terms of water quantity (Jacobson 2011). The focus of these 
impacts is on flood occurrence during a precipitation event. First, floods 
come earlier in an urbanized area and the time of the flood peak also comes 
earlier (Espey et al. 1966). With the increase of surface runoff, the discharges 
of the floods are also increased (Espey et al. 1966) along with the drainage 
density and the flashiness of the storm flow (Graf 1977). Moreover, the flood 
duration is shortened as the flow runs much faster on impervious surfaces 
and in drainage tubes than on the soils (Seabum 1969). Meanwhile, dur-
ing flooding, band erosion and the size of bed material is increased as the 
flow increases (Arnold et al. 1982). Several studies show that both the degree 
and spatial distribution of impervious surfaces have important influences 
on the water cycle (Booth and Jackson 1997; Brun and Band 2000; Sheeder 
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et al. 2002). The water cycle only changes a little when the urbanization 
level is low, but the changes increase as urbanization increases. Booth and 
Jackson (1997) reported that if impervious surfaces are used as the indica-
tor of urbanization, the changes begin to accumulate significantly after the 
percentage of impervious surfaces reaches 10%, while Brun and Band (2000) 
claimed that the threshold for impervious surfaces is about 20% in their 
study area. More recently, in another study conducted by Yang et al. (2010), 
they suggested 35% as a statistical threshold for impervious surface areas 
that would have a significant influence on the watershed. According to the 
literature, researchers agree that the appearance of impervious surfaces has 
significant impact on the watershed in terms of its quantity; however, stud-
ies are needed to investigate the exact impact of both the degree and the 
spatial distribution of impervious surfaces in urbanized regions, which is 
important for scholars of and decision makers within urban planning agen-
cies and local governments.

In addition to water quantity, changes in the water cycle due to impervious 
surfaces also dramatically influence water quality, especially so-call non-
point source (NPS) water pollution (Arnold and Gibbons 1996; Civico and 
Hurd 1997; Schueler 1994). Before urbanization, most pollutants that accu-
mulated over land surfaces remained on the land because the intensity of 
surface runoff is low. Moreover, pollutants would be filtered by the soil dur-
ing the infiltration process. However, as a consequence of urbanization, most 
pollutants accumulate on the roads, rooftops, and other impervious surfaces 
and are washed off by storms and transported by rainwater via drainage 
systems and finally into rivers. Studies have shown that various pollutants 
in an urbanized area are closely related to the impervious surfaces in the 
region (Bannerman et al. 1993; Schueler 1994). It has been reported that some 
important types of pollutants are highly related to impervious surfaces such 
as highways and roads. For instance, pathogens, nutrients, and toxic contam-
inants can be found on highways and roads, and these pollutants are harm-
ful to the fish in the water body and can even cause harm to the animals and 
humans who drink the water directly or indirectly (Bannerman et al. 1993; 
Civico and Hurd 1997; Sleavin et al. 2000).

1.2.1.2 � Urban Heat Islands

Impervious surfaces also change the heat balance between the land sur-
face and the atmosphere. One well-known example is the urban heat island 
(UHI), which is an urbanized area that is much warmer than its surround-
ing rural areas (Weng et al. 2004). It is reported that the increase of tem-
perature is correlated to the imperviousness of the urban area (Galli 1991). 
Impervious surfaces can influence the urban heat balance in several ways. 
First, most common impervious materials such as concrete and asphalt 
absorb more solar heat than natural land covers such as grassland and forest 
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areas (Slonecker et al. 2001). This absorbed heat would then be released into 
the atmosphere and thus lead to an increase of the air temperature, which 
can be more than 10 degrees higher than the natural areas (Schueler 1994). 
Some governments are considering developing other types of impervious 
materials that are able to reduce the heat effects, such as the use of cool roofs 
consisting of materials that can highly reflect solar radiation from rooftops 
(Jo et al. 2010). Cool roofs are often done in cool colors such as white and 
light blue. The use of cool roofs can have a significant effect on reducing the 
UHI, as roofs account for more than 20% of the impervious surface areas 
in an urban city (Jo et al. 2010; Rose et al. 2003). Second, the occurrence of 
impervious surfaces reduces the coverage of vegetated areas, which actually 
plays an important role in balancing the heat in an urban area (Arnold and 
Gibbons 1996; Schueler 1994). Vegetation reduces the UHI effect by reflect-
ing more solar radiation than impervious materials and consuming some 
solar energy with photosynthesis. This is why some cities are now building 
vegetated rooftops by planting various flowers or trees on roofs. Moreover, 
impervious surfaces also reduce the vegetation cover in stream sides (Hu 
2011). These vegetation plants actually shade the stream and thus are able 
to reduce the temperature around the stream area. Klein (1979) reported 
the temperature in a nonshade stream can be up to 11 degrees higher than 
that in a shade stream in the Maryland area (Klein 1979). Much research has 
been conducted to investigate the quantitative relationship between imper-
vious surface areas and the UHI (Lu and Weng 2006; Yuan and Bauer 2007).

1.2.2 � Socioeconomic Significance

In addition to environmental impacts, impervious surfaces are also an impor-
tant socioeconomic indicator. First, impervious surfaces have been consid-
ered as a better indicator compared to the number of urban population for 
urban sprawl evaluation (Torrens and Alberti 2000). Conventionally, popula-
tion is the major parameter to assess the urbanization process. For instance, 
in China, the government uses the percentage of people who have registered 
as urban residences (according to the household registration system in China) 
in the total number of residences in an administrative area. That percentage 
is then used to characterize the percentage or degree of urbanization of the 
area. However, in a rapidly urbanized area (e.g., Guangzhou and Shenzhen 
in South China), a number of people who have registered with the govern-
ment as having rural residences actually work and live in the city center. 
They may be local or external from other rural areas. The number of these 
people is actually very difficult to calculate; however, they should be counted 
as having urban residences because they work and live as urban citizens. 
Therefore, in this case, it becomes very difficult to quantize the urbanization 
degree of the studied area. Fortunately, impervious surfaces provide a good 
alternative for evaluating urbanization because from a physical point of view 
they account for the majority of changes in an urbanized area compared 
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with how it was before becoming urbanized. Moreover, impervious surface 
distribution can be easily obtained either from a physical survey or by analyz-
ing satellite images (Jat et al. 2008). Second, impervious surfaces are used 
to estimate population density. It is reported that impervious surfaces can 
be employed as supplementary data to estimate population density using a 
regression approach (Wang and Cardenas 2011). Wu and Murray (2005) used 
the cokriging approach to improve estimation by simultaneously accounting 
for the spatial autocorrelation of population density and impervious surface 
fraction (Wu and Murray 2005). Their research showed that population den-
sity and impervious surface fraction are coregionalized variables with low 
variance, and that impervious surfaces are better than other land use classes 
to estimate population density (Wu and Murray 2005).

1.3 � Challenges of ISE

1.3.1 � Land Cover Diversity and Spectral Confusion Issues

Land cover diversity is a direct challenge for land cover classification and 
ISE using remote sensing images. However, since land covers in urban areas 
and their changes are caused by both natural and human factors, land cover 
diversity is different from one place to another. It is important to figure out 
the challenges and impacts of land cover diversity in tropical and subtropi-
cal areas with regard to ISE. One of the most important problems produced 
by land cover diversity is the so-called spectral confusion, which refers to 
the similarity of spectral signatures among different land covers. Spectral 
confusion is also related to the difference of spectra within the different sub-
types of one land cover type. Generally, there are some open issues related to 
the spectral confusion problem. First, bare soils or sands are often confused 
with bright impervious surfaces (e.g., cool roofs and new concrete roads), 
while shade and water are often confused with dark impervious surfaces 
(e.g., asphalt and old concrete roads). These confusions are caused by the 
similar spectral reflectance of different materials. Second, clouds and their 
shadows are considered a difficult issue to deal with in tropical and subtrop-
ical regions, where cloudy and rainy weather occurs throughout the entire 
year. Both of these problems lower the accuracy of the land use/land cover 
(LULC) classification in tropical and subtropical urban areas.

1.3.2 � Scale Effects

The spatial resolution issue has long been considered very important in 
remote sensing applications (Jensen 2007; Jensen and Cowen 1999). During 
remote sensing of urban impervious surfaces, spatial resolution should 
be considered carefully, depending on the objectives of the study, for two 
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reasons. First, coarse resolution data is more suitable for large-scale map-
ping of impervious surfaces due the availability of data and computational 
costs for data processing. For instance, for global mapping of impervious 
surfaces, coarse resolution data such as that from moderate-resolution imag-
ing spectroradiometer (MODIS) and National Oceanic and Atmospheric 
Administration (NOAA) of about 1-km resolution is often selected, while 
Landsat data with 30 m resolution is becoming an emerging study area in 
recent years since the onset of global coverage data. However, very-high-
resolution data (e.g., Quickbird and Ikonos) is not suitable for global remote 
sensing studies because global coverage data and continuous updates are 
not available for such a high resolution and the computational cost would be 
very high. Second, the methodology design and selection should be changed 
when using various resolutions of data for impervious surface mapping. 
There are different characteristics in the remote sensing data of different res-
olutions that require various methods to effectively extract accurate impervi-
ous surface information. In general, remote sensing data can be categorized 
into three types: coarse resolution, very high resolution, and high resolution. 
These three categories have previously been applied to estimate impervious 
surfaces.

Coarse resolution remote sensing data often refers to data with a spatial 
resolution that is lower than 100 m, such as advanced very high resolution 
radiometer (AVHRR) MODIS, and NOAA. Coarse resolution data is appro-
priate for regional and global mapping of impervious surfaces (Cracknell 
1999; Gamba and Herold 2009; Lu et al. 2008; Quattrochi and Goodchild 
1997; Schneider et al. 2010; Weng 2012). The selection of methods for process-
ing coarse resolution data should depend on the mixed pixel phenomenon. 
Mixed pixels dominate coarse resolution images, and thus using per-pixel 
mapping of impervious surfaces often leads to overestimation or underes-
timation. Therefore, subpixel analysis methods such as spectral mixture 
analysis (SMA) are often adopted (Weng 2012).

Very-high-resolution remote sensing data often refers to data with a spatial 
resolution that is higher than 10 m, such as Quickbird, Ikonos, and Worldview. 
Local impervious surface mapping in a city may require very-high-resolution 
data since it can provide detailed LULC information that could be useful for 
urban planning and management. Much research has been done on remote 
sensing of impervious surfaces with very-high-resolution data (Cablk and 
Minor 2003; Goetz et al. 2003; Lu and Weng 2009; Lu et al. 2011; Wu 2009). Mixed 
pixels are significantly reduced in very-high-resolution data. However, there 
are challenging issues to address compared with coarse-resolution data. First, 
shadows from tall buildings and trees and topography are much more prev-
alent in very-high-resolution data than in coarse resolution data (Dare 2005). 
These shadows can influence the extraction of an impervious surface by reduc-
ing or removing the reflectance of solar radiation when using optical remote 
sensing data and the reflectance of active microwaves when using SAR remote 
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sensing. Moreover, the spectral reflectance of shadows is often easily confused 
with dark impervious surfaces such as asphalt and old concrete roads and roof-
tops, and consequently, reduces the accuracy of impervious surface mapping. 
Second, spectral variations within the subtypes of land covers are increased 
in very-high-resolution images (Hsieh et al. 2001; Weng 2012). Therefore, the 
selection of methods should consider this characteristic. For instance, the fre-
quently used maximum likelihood classifier (MLC) has been applied to classify 
remote sensing images. The application of MLC depends on the probability 
distribution of each class. However, in very-high-resolution images, the prob-
ability distribution of a land cover type may be changed as the spectral varia-
tion increases within the subtypes. In this case, the applicability of MLC should 
be reassessed before being applied to very-high-resolution images. In the pro-
cessing of very-high-resolution remote sensing images, the combined use of 
spectral and spatial information is often recommended (Lu and Weng 2007).

Remote sensing images with a spatial resolution between 100 and 10 m 
can be treated as high-resolution images, such as Landsat and Système Pour 
l’Observation de la Terre (SPOT). High-resolution images should be the most 
frequently used data due to the great range of applications and availability of 
datasets. For instance, Landsat data has been applied in many global remote 
sensing studies such as global impervious surface mapping and global 
LULC mapping. However, high-resolution images have very complicated 
image characteristics, including mixed pixels, shadows from tall buildings, 
and topography and spectral variation within one land cover type and sub-
types. Therefore, the selection of methods depends on a number of factors, 
such as the landscape of the study area, the seasons of the selected data, and 
the application objectives of the study.

1.3.3 � Influence from Climatology and Phenology

There are several types of climate in tropical and subtropical areas, such as 
tropical rainforest climate, tropical wet-dry climate, and humid subtropical 
climate.

1.3.3.1 � Humid Subtropical Climate

A humid subtropical climate is known as Cfa or Cwa in the Koppen climate 
classification of world climate (Peel et al. 2007). This climate is characterized 
by hot, humid, and generally mild to cool winters (Peel et al. 2007). The Cfa 
or Cwa regions are generally located on the east coast of continents between 
20° and 40° North and South latitude. Peel et al. (2007) demonstrate the spa-
tial distribution of humid subtropical climates all over the world. Therefore, 
a humid subtropical climate can be found in the southeastern parts of the 
United States, South America, and South Africa, and the eastern parts of 
Australia and Asia (e.g., Northern India, China, and Japan).
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A humid subtropical climate is characterized by its unique temperature 
and precipitation features. Generally, the temperature is between 21°C and 
26°C in summer and above 0°C in winter. Moreover, the variance of tem-
perature in one day is very small. Thus, there is warm winter and very little 
temperature difference between summer and winter. On the other hand, a 
humid subtropical climate experiences high precipitation and is wet and 
humid throughout the year. There are dry and wet seasons. In general, the 
wet season begins from May to August when there is a lot of rainfall. The 
dry season begins from September to January when the number of cloudy 
and rainy days is reduced. From February to April, the weather is warm and 
humid.

1.3.3.2 � Humid Subtropical Phenology

Generally, a humid subtropical phenology is determined by the humid 
subtropical climate through the characteristics of temperature and precipi-
tation. The phenology is widely recognized to strongly depend on the cli-
mate (Hudson et al. 2009; Inouye 2008; Jones and Davis 2000). In terms of 
humid subtropical areas, previous studies suggest that there is strong sea-
sonality of the plants in subtropical forest ecosystems (Kikim and Yadava 
2001). Generally, the natural vegetation in this zone is a subtropical ever-
green forest, which occurs in two forms: broadleaf and needle-leaf. There 
is no obvious difference between spring (leaf-on) and autumn (leaf-fall) as 
in the temperate regions (Shukla and Ramakrishnan 1982). However, there 
are some differences in the forest in different seasons due to the growing 
season when leaves are flushing and some tree species are flowering. These 
differences can be reflected in the concentration of chlorophyll in the leaves, 
which can be observed by remotely sensed data. As a result of this seasonal 
variation of plants, vegetation cover changes seasonally over a large scale on 
the land surface, which can also be seen from satellite images.

1.3.3.3 � Seasonal Effects from Climatology and Phenology

The seasonal changes of the climatology and phenology can result in seasonal 
changes of land covers. These seasonal effects include two aspects: (1) the dif-
ference in precipitation in dry seasons and wet seasons can produce differ-
ences of water surface area on the land surface, and (2) the seasonal changes of 
plants will change the vegetation coverage in the areas of hills, mountains, and 
greening zones in urban areas. Water body and vegetation are two important 
land cover types in urban remote sensing studies, and the distribution of these 
two land cover types can lead to different patterns of spectral confusions in a 
given urban study area.

The land cover changes produced by the climatology and phenology 
are the so-called seasonal effects detailed in Chapter 4. As pointed out in 
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previous research, ISE from satellite images vary in different seasons due 
to the seasonal changes of vegetation. Impervious surfaces were reported 
to be overestimated in wintertime, when tree canopies were at their mini-
mum (Weng et al. 2009). Moreover, different ISE methods may be sensitive to 
this seasonal change in different ways. For instance, linear spectral mixture 
analysis is more sensitive to seasons, while the regression tree model is less 
sensitive to this change (Wu and Yuan 2007). Nevertheless, the work done 
by Wu and Yuan (2007) and Weng et al. (2009) was conducted at the mid-
latitude region where the plant phenology undergoes dramatic changes in 
different seasons (Weng et al. 2009; Wu and Yuan 2007). Thus, it is still not 
clear whether the seasonal effects observed previously suit the situation in 
subtropical humid areas such as the Pearl River Delta (PRD). Chapter 4 aims 
to address this question and assess the seasonal effects of ISE in the PRD 
region.

Seasonal effects have been identified as an important factor for ISE with 
regard to remote sensing data, but the seasonal effects in tropical and sub-
troprical regions remain unclear. Seasonal changes of land covers from 
remote sensing images can be caused by various factors, such as plant phe-
nology and seasonal precipitation changes. In those cases, the seasonal land 
cover changes would influence the accuracy of classification due to the dif-
ferences of spectral confusions between land covers with a similar reflec-
tance. Since plant phenology and precipitation are unique in tropical and 
subtroprical regions compared with other study areas in the literature, the 
seasonal effects should be reexamined to select the best season for ISE. The 
hypothesis is that plant phenology and climatology in tropical and subtro-
prical regions will determine the best season for ISE from satellite images, 
which would be different than in other regions of the world, and that winter 
may be the best season for imaging because it is dry with less clouds and 
precipitation.

1.3.4 � Multisensor Fusion

Most previous studies were focused on using a single data source, mainly 
optical remote sensing, to estimate impervious surfaces. However, because of 
the rapid development of advanced satellites and the availability of multiple 
sources of satellite data, there is an increasing demand for multisensor fusion 
to obtain more accurate ISE at local, regional, and global scales. Among these 
multisensor applications, light detection and ranging (lidar) and SAR data are 
two commonly used additional data sources. Moreover, since there is still no 
spaceborne lidar data, SAR is actually the most frequently used data source to 
be incorporated with optical images for ISE.

SAR has been widely recognized as an important data source that is able 
to compensate optical remote sensing images in urban remote sensing stud-
ies. However, comprehensive assessment of SAR data for improving the 
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estimation of urban impervious surfaces is still insufficient. In addition, the 
existing literature focuses more on the advantages of SAR data and less on 
the disadvantages. In order to effectively combine the two data sources, it 
is important to understand both the advantages and disadvantages of SAR 
data. The hypothesis about this issue is that SAR provides complementary 
information with the advantage of being sensitive to the urban surface rough-
ness; nevertheless, the disadvantages of SAR data regarding ISE should also 
be recognized and taken into consideration.

Technically combining optical and SAR images for accurate ISE is one of 
the key issues in this book. Guided by the understanding of the two data 
sources and the challenges of ISE, the design of the methodology (includ-
ing feature extractions from two data sources, selection of fusion levels, and 
classification models) is to be proposed, implemented and validated in this 
research. The technical hypothesis is that feature extraction for both the opti-
cal and SAR images are important for the fusion, but the two data sources 
should be treated in different ways during the fusion procedure.

1.4 � Objectives and Significance

The overarching goals of this book are to review the state of the art of ISE 
using remote sensing and to develop a generic methodology for accurate 
ISE from multisatellite images in tropical and subtropical areas. The specific 
objectives of the book are therefore to

	 1.	Summarize the environmental and socioeconomic impacts of imper-
vious surfaces, the state-of-the-art methods of ISE using remote 
sensing technology

	 2.	 Investigate and assess the impact of climate zone on ISE in tropical 
and subtropical areas

	 3.	 Investigate and assess the diversity of land covers in a rapid urban-
ized area of tropical and subtropical regions

	 4.	Explore the additional use and potentials of radar images for improv-
ing the accuracy of ISE

	 5.	Synergistically use both the optical and radar images for accurate 
estimation of urban impervious surfaces in tropical and subtropical 
areas

Impervious surfaces have increased dramatically over the past decades as a 
result of rapid urbanization in tropical and subtropical countries. It has been 
widely recognized that impervious surfaces serve as a key environmental 
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indicator since they affect the water cycle, water pollutants, and the energy 
balance, and thus, relate closely to the UHI effect. It has also been reported 
that impervious surfaces serve an important role in urban socioeconomic 
studies such as detailed population distribution.

Given their importance, many methods have been developed to assess 
impervious surfaces using satellite images, but most were tested in temper-
ate, continental areas. Few considered the cases in tropical and subtropical 
areas where there is significant cloud occurrence and different phenology. 
Due to these differences, difficulties are encountered when using optical 
remote sensing data—the main data source used in previous studies—in 
tropical and subtropical areas. Seasonal changes in vegetation, recognized 
as a key factor in ISE, create further challenges. Existing approaches need 
to be evaluated while additional data sources should be considered in order 
to establish an advanced assessment of impervious surfaces in tropical and 
subtropical urban areas.

The outcome of the research detailed in this book will provide evidence of 
the seasonal effects on impervious surface assessment due to phenological 
changes, evaluate the potential of SAR data for improving impervious sur-
face assessment, and design a comprehensive framework to estimate imper-
vious surfaces using optical and SAR images. As well, the methodology and 
conclusions of this research will serve as a general and useful reference for 
urban remote sensing studies in tropical and subtropical countries.

1.5 � Organization of This Book

The organization of this book is briefly illustrated in Figure 1.1. This chapter 
has introduced the background of existing research, the research questions, 
issues, and related hypotheses, and the objectives and significance of the 
research. Chapter 2 reviews the literature on the significance of ISE and the 
phenological and climatic characteristics of tropical and subtropical regions, 
as well as on previous research of ISE. Chapter 3 describes the study materials 
in Chapters 4 through 7, including study areas, test sites, and datasets such 
as satellite data, digital orthophoto, and in situ data. A methodological frame-
work is also presented in Chapter 3, including methods for investigating the 
seasonal effects of ISE, feature extraction methods, the fusion between optical 
and SAR data, and the validation methods of the results. The results are pre-
sented and discussed in Chapters 4 through 7, presenting and discussing the 
results of feature extraction based on shape-adaptive neighborhood (SAN), the 
seasonal effects of ISE, urban land cover diversity, and the combined use of 
optical and SAR data, respectively. Chapter 8 summarizes the main findings 
and conclusions, as well as the limitations and future research.
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Chapter 1 “Introduction”

Chapter 2 “Impervious  
Surface Estimation Using 
Remote Sensing”

Chapter 3 “Methodology  
of Combining Optical and 
SAR”

Chapter 4 “Impact of  
Climate Zone on 
Impervious Surface
Estimation and Mapping”

Chapter 5 “Assessing the
Urban Land Cover
Complexity”

Chapter 6 “Comparative
Studies with Different
Image Data and Fusion
Methods”

Chapter 7 “In-Depth
Study: ISE Using Optical
and SAR Data”

Introduces the research background, research
questions and hypotheses, objectives, and
significance of the study

Reviews the literature of the characteristics of 
tropical and subtropical regions and previous 
research on ISE

Describes the study area and datasets in detail and
introduces the methodological framework for ISE
using optical and SAR images

Results and discussion on the impacts of the
seasonal effects of ISE in tropical and subtropical
areas

Results and discussion on the urban land cover
diversity of four cities in tropical and subtropical
countries

Results and discussion of three comparative 
studies on the data sources, fusion strategies, 
and feature extraction approaches 

An in-depth study of fusing optical and SAR data 
for ISE in Guangzhou, Hong Kong, Sao Paulo, 
Mumbai, and Cape Town

Chapter 8 “Conclusions
and Recommendations”

Summary on the main findings and conclusions
as well as the limitations and future research

FIGURE 1.1
Organization of this book.
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2
Impervious Surface Estimation 
Using Remote Sensing

2.1 � Overview of the Methodology

Urban impervious surfaces can have a great impact on the urban solar energy 
balance, air quality, nonpoint source water pollution, storm runoff process, 
and so forth. In addition, impervious surfaces have also been identified as a 
key factor of many socioeconomic issues such as population distribution and 
house price. Thus, accurate mapping of impervious surfaces becomes signifi-
cant not only for the environmental monitoring but also for various socioeco-
nomic studies. In some developed countries, much work has been done to 
map impervious surfaces. For instance, in the United States, the impervious 
surfaces layer was developed using Nighttime Lights Time Series (2000–2001) 
and LandScan 2004 population count, at a coarse resolution, along with United 
States Geological Survey (USGS) 30 m resolution ISE of the United States for 
calibration (Elvidge et al. 2007; NOAA 2010). In Europe, there is a series of 
seamless European mosaics for impervious surfaces (EEA 2006), including 
an updated raster dataset containing the degree of imperviousness ranging 
from 0%–100% in aggregated spatial resolution (100 × 100 m).

Dramatic urbanization has taken place in many regions creating a number 
of metropolises in the world. The PRD region is one such area. The region is 
located on the Pearl River Estuary (PRE), known as the third largest metro-
politan area in China, experiencing tremendously fast development during 
the past 30 years. The region has rapidly become urbanized, with a popula-
tion of over 19 million in an area of over 21,000 km2 (Fan et al. 2008). One of 
the major features of such rapid urbanization is the increase in the spread of 
impervious surfaces.

Hong Kong and other cities in PRD are now covered by large areas of imper-
vious surfaces, including rooftops, transportation networks, and parking 
areas. Kowloon and the north of Hong Kong Island is one of the most heavily 
urbanized areas in the world. Previous research indicates that the percentage 
of impervious surfaces in the commercial business districts and residential 
areas on both sides of Victoria Harbour has exceeded 70% (Jiang et al. 2009).
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2.2 � ISE Using Single Data Source

2.2.1 � Spectral Mixture Analysis

Spectral mixture analysis (SMA) is a conventional approach for impervi-
ous surface estimation at the subpixel level. SMA is based on the biophysi-
cal composition model called vegetation-impervious surface-soil (VIS). By 
excluding the water surface, which is relatively easier to identify, the VIS 
model treats the urban environment as a biophysical composition of three 
components: vegetation, impervious surface, and bare soil (Ridd 1995; Wu 
and Murray 2003). Therefore, a pixel in a remote sensing image can be 
treated as a combination of these three components. With a spectral mixture 
model, the percentage of each component can be calculated. The spectral 
mixture model describes how the three components are combined or mixed 
together to form a final pixel. There are both linear and nonlinear spectral 
mixture models. The selection of models should depend on the complex-
ity of land covers. If each photon interacts with single land cover type, a 
linear mixture model should be applied, but if each photon interacts with 
multiple land cover types, a nonlinear model should be applied (Wu and 
Murray 2003). However, a composition model can be approximately treated 
as a linear model in an urban environment where the nonlinear effect can be 
neglected (Phinn et al. 2002; Rashed et al. 2001; Small 2001, 2002). Therefore, 
linear spectral mixture models are often applied in urban impervious sur-
face estimation. SMA using a linear spectral mixture model is also called 
linear SMA (LSMA). Wu and Murray (2003) divided the impervious surface 
into two subtypes: low albedo impervious surface and high albedo impervi-
ous surface (Wu and Murray 2003). Therefore, the VIS model was extended 
to include four components: vegetation, low albedo impervious surface, high 
albedo impervious surface, and bare soil. By solving the SMA or LSMA mod-
els, fractions of each component can be obtained, and then, the impervious 
surface percentage can be calculated with the fractions of subtypes of imper-
vious surfaces and the low albedo and high albedo fractions. A typical work-
ing flow of impervious surface estimation using LSMA is described below.

2.2.1.1 � Endmember Selection

Theoretically, optimal endmembers should be selected by laboratory mea-
surement of each endmember’s spectra. When applying them to remote 
sensing studies, remote sensing images should be corrected to remove the 
atmospheric effects, and then the linear mixture analysis can be applied 
using the laboratory endmember data and corrected remote sensing data. 
However, in real applications, lab-based measurement of endmembers is 
probably unavailable, and thus endmembers should be derived from remote 
sensing images. One popular approach of selecting endmembers from 
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remote sensing images is to use the visualizing spectral scatter plots of dif-
ferent image bands or the components of the image transformation (e.g., 
principal component [PC] and maximum noise fraction [MNF]). To show 
how this approach is applied for endmember selection, an example proposed 
by Wu and Murray (2003) is given here. In Wu and Murray’s research, the 
MNF transformation was employed to minimize the noises in one band and 
in band-to-band correlation. The three steps of MNF are (Wu and Murray 
2003): (1) applying the PC transformation to diagonalize the noise covari-
ance matrix, (2) converting the noise covariant matrix to an identity matrix, 
and (3) performing a second PC transformation. The first two components 
were identified to have significant spatial variations between different land 
covers, and the third component showed a significant feature for bare soil. 
Then, the scatter plots of these MNF components can be visualized to guide 
the selection of endmembers. In their research, the first three components of 
MNF transformation were used, and every pair of components was plotted 
indicating the locations of the distributions of different land cover types. 
Then four endmembers (high albedo, low albedo, vegetation, and soil) were 
identified and selected by comparing this feature space and their association 
in the original reflectance image. After selecting the endmembers, the reflec-
tance of each endmember can be calculated.

2.2.1.2 � Linear Spectral Mixture Model and Fraction Images

After selecting the endmembers, LSMA can be applied using the linear spec-
tral mixture model. LSMA is a physically based image processing approach 
that describes the linear composition of spectra within a pixel in an image 
using the spectra of endmembers. Detailed descriptions of the linear spec-
tral mixture model and its principles can be found in the literature (Adams et 
al. 1995; Roberts et al. 1998; Weng et al. 2008; Wu and Murray 2003). The basic 
mathematical model can be expressed as

	 R f R eb i i b b
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where Rb is the reflectance of a given pixel in Band b, Ri,b is the reflectance 
of endmember i in Band b in the case of a pure pixel, fi is the fraction of 
endmember i in the pixel, N is the number of endmembers, and eb is the 
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i

N
=

=∑ 1
1

 and 

fi ≥ 0. This is also known as the fully constrained linear mixture model. In a 
real application after endmember selection, Rb and Ri,b are known, and the 
objective is to solve out fi that is the fraction of each endmember. To solve 
the model, besides the abovementioned two constraints, there is another 
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constraint to minimize the overall unmodeled residual in all bands, which 
can be expressed as root-mean-square (RMS) error:

	 RMS e Mb
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where M is the number of bands. However, it is difficult to perfectly solve 
the fully constrained linear mixture model subjected to the constraints. 
Therefore, in order to find a better solution, three conditions should be satis-
fied (Weng et al. 2008): (1) the selected endmembers should be independent, 
(2) the number of endmembers should not be greater than the number of 
bands, and (3) the reflectance of bands should not be highly correlated.

After solving the linear spectral mixture model, the fraction of each end-
member in each pixel can be obtained. By showing the fraction of all the 
pixels, a fraction image can be generated for each endmember, and the RMS 
image shows how well the full constrained spectral mixture model is solved. 
In Wu and Murray’s research, the mean RMS is 0.0057, indicating a generally 
good fit (less than 0.02). RMS in residential, vegetation, soil, and water cover 
types is rather low. However, some high albedo materials, such as high-
reflectance roofs, clouds, and sand, are not so good with higher RMS values.

2.2.1.3 � Impervious Surface Estimation

The modeling of an impervious surface is not straightforward due to its 
complexity in spectral reflectance. However, Wu and Murray (2003) found 
that impervious surfaces can be approximately modeled by adding the low 
albedo and high albedo fraction image. To test this conclusion, the follow-
ing experiment has been done by both Wu and Murray (2003) and Weng et 
al. (2009). In a central business district (CBD) region where all the pixels are 
supposed to be impervious surfaces, the reflectance of impervious surfaces 
can be expressed as

	 Rimp,b = flowRlow,b + fhighRhigh,b + eb	 (2.3)

where Rimp,b is the reflectance of the impervious surface of a given pixel 
in Band b, Rlow,b is the reflectance of the endmember low albedo and flow is 
its corresponding fraction in the pixel, Rhigh,b is the reflectance of the end
member high albedo, fhigh is its corresponding fraction in the pixel, and eb is 
the unmodeled residual. This model is constrained to flow + fhigh = 1 and 0 < 
flow, fhigh < 1. In their experiments, both results show good fitting of this two-
endmember spectral mixture model with the impervious surface located 
near the line connecting low albedo and high albedo endmembers.
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Therefore, the fraction of an impervious surface can be simply considered 
as the sum of the fractions of low albedo and high albedo. By doing so, a 
fraction image of an impervious surface was generated in Wu and Murray’s 
study.

Lastly, in order to successfully model the impervious surface with LSMA, 
nonimpervious surfaces with low albedo and high albedo should be consid-
ered and removed before applying the LSMA. Generally, a low reflectance 
nonimpervious surface includes water and shaded areas, while a high reflec-
tance nonimpervious surface includes cloud and sands. Only with all these 
pixels removed can the LSMA be used to model the impervious surface suc-
cessfully (Wu and Murray 2003; Weng et al. 2008).

2.2.2 � Normalized Impervious Surface Indices

Normalized impervious surface indices (NISIs) have been developed to 
enhance the impervious surface in a remote sensing image, working simi-
larly to the well-known normalized difference vegetation index (NDVI). So 
far, there are two normalized indices that can be used to characterize imper-
vious surfaces, the normalized difference impervious surface index (NDISI) 
developed by (Xu 2010) and the biophysical composition index (BCI) devel-
oped by (Deng and Wu 2012). The basic ideas of these NISIs are described 
next.

2.2.2.1 � NDISI

The general idea of NDISI is to enhance the difference of spectral reflec-
tance of impervious surfaces and nonimpervious surfaces in the visible, near-​
infrared  (NIR), mid-infrared (MIR), and thermal infrared (TIR) ranges. 
The basic idea of NDISI relies on the following observations (Xu 2010): 
(1) impervious materials (e.g., concrete and asphalt) have a stronger capabil-
ity of emitting heat reflected in TIR and lower reflectance in NIR, (2) soil, 
sand, and water generally have higher reflectance in visible bands, and (3) soil 
and sand have stronger reflectance in the MIR band. Based on these observa-
tions, the NDISI can be calculated as

	 NDISI
TIR VIS NIR MIR
TIR VIS NIR MIR
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where TIR is the thermal band, VIS1 is the reflectance of visible band, and 
NIR and MIR1 are the reflectance of the NIR and MIR bands. However, Xu’s 
experiment showed that water can have a lower reflectance than an impervi-
ous surface in visible bands in clear waters, causing some confusion in the 
NDISI values between water and impervious surface (Xu 2010). In order to 
address this problem, Xu found that the use of water index (WI) instead of 
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visible band was able to reduce this confusion, as WI can enlarge the contrast 
between water and an impervious surface (Xu 2010). Therefore, NDISI can be 
calculated as

	 NDISI
TIR WI NIR MIR
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=
− + +
+ + +
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1

3
3

/
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	 (2.5)

where WI can use any water index such as the NDWI proposed by McFeeters 
(1996) and the modification of normalized difference water index (MNDWI) 
developed by Xu (2006).
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where Green is the reflectance in the green band.
Finally, the NDISI value is a real number between −1 and 1, with higher 

values indicating impervious surfaces and lower values indicating nonim-
pervious surfaces. Therefore, NDISI means neither the percentage nor the 
area of an impervious surface. In order to estimate the percentage or area of 
an impervious surface, more processing should be employed using NDISI. 
For instance, Xu (2010) used multivariate statistical analysis to estimate the 
subpixel percentage of impervious surfaces, with the help of training samples 
from higher-resolution images. Lastly, it should be noted that the TIR band is 
required to calculate NDISI. Therefore, NDISI cannot be calculated for some 
remote sensors without TIR data such as SPOT, Ikonos, and Quickbird.

2.2.2.2 � BCI

BCI was recently proposed to characterize urban biophysical composition 
and identify impervious surfaces based on the normalized tasseled cap 
(TC) transformation (Deng and Wu 2012). According to the BCI principles, 
an impervious surface falls into the range of positive and higher BCI val-
ues, while vegetation and soil have negative BCI values. The original idea 
of BCI follows the VIS triangle model proposed by (Ridd 1995). In order 
to transform the BCI to be positive for impervious surfaces and negative 
for nonimpervious surfaces, Deng and Wu (2012) employed and examined 
the components of TC transformation. Two important observations were 
found in their experiment: (1) TC1 (first TC component) and TC3 (third 
TC component) showed a strong negative linear relation by an elongated 
strip, (2) a higher value of TC3 does not always corresponds to higher water 
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concentration. Therefore, the first three TC components were explained to 
correspond to three typical urban biophysical compositions: TC1 as “high 
albedo,” TC2 as “vegetation,” and TC3 as “low albedo.” Moreover, if the TC 
components are normalized to be between 0 and 1, these relationships are 
clearer; that is, TC1 is highly related to bright impervious surface, TC2 is 
highly related to vegetation, and TC3 is highly related to a dark impervious 
surface. Based on these observations, the BCI can be calculated with the 
following equation:

	 BCI
H L V
H L V
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+ +
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/
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where H is the normalized TC1 as high albedo, L is the normalized TC3 as 
low albedo, and V is the normalized TC2 as vegetation. The normalized TC 
components can be computed as follows:

	

H
TC TC

TC TC

V
TC TC

TC TC

=
−
−

=
−
−

1 1
1 1

2 2
2 2

min

max min

min

max mmin

min

max min

L
TC TC

TC TC
=

−
−

3 3
3 3

	 (2.9)

where TCi (i = 1, 2, 3) are the first three components and TCimin and TCimax are 
the minimum and maximum values of the ith TC components.

Compared with NDISI, BCI does not depend on TIR bands and it can be 
applied to any remote sensing images theoretically. However, note that BCI 
cannot represent the percentage or area of an impervious surface; additional 
methods should be used to quantify it. For instance, Deng and Wu (2013) 
conducted other research on impervious surface estimation using BCI at the 
subpixel level. In their research, BCI was used to help select endmembers in 
an automatic way in order to improve the accuracy of impervious surface 
mapping using LSMA (Deng and Wu 2013).

2.2.3 � Artificial Neural Network (Multilayer Perceptron 
and Self-Organizing Map)

2.2.3.1 � Multilayer Perceptron

One of the most widely used artificial neural networks (ANNs) is the multi-
layer perceptron (MLP) feedforward network (Kavzoglu and Mather 2003), 
which is structured with three types of layers: input, hidden, and output. For 
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the application of satellite imagery, the input layer corresponds to the bands 
of multispectral images, and the output layer represents different kinds of 
land use, land cover, or various material classes (Weng and Hu 2008). The dif-
ferent procedures about classifying are conducted within the hidden layer(s), 
depending on both the number of hidden layers and the number of nodes 
in each hidden layer. In this study, the input layer corresponded to the six 
bands (30 m × 30 m) for the enhanced thematic mapper plus (ETM+) image. 
For the advanced synthetic aperture rader (ASAR) data, speckle filtering and 
texture analysis with the gray level co-occurrence matrix (GLCM) method in 
Section 3.5.3 was first applied, and then the input layer corresponded to the 
texture images of the ASAR data. A typical structure of the three-layer MLP 
is shown in Figure 2.1.

Except for the input layer and the output layer, the nodes in the hidden 
layer will conduct the classification procedures and each node has a similar 
structure shown as in Figure 2.2.

The function f is called the activation function, which can be illustrated as 
the following formula:

	 O f W Ij ij i

j

= ∑ 	 (2.10)
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Structure of MLP.
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FIGURE 2.2
A node in the hidden layers.
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where Wij denotes the weighting of the previous output (Ii) from an input 
node, and Oj is the output of this node.

The first consideration is the number of hidden layers. There may be one or 
two hidden layers for the application of MLP in remote sensing classification 
(Weng and Hu 2008). However, a single hidden layer should be sufficient for 
most problems, especially for classification tasks (Cybenko 1989; Lippmann 
1987). This is considered to be appropriate for most multispectral satellite 
images since there are ordinarily only several spectral bands. Staufer and 
Fischer (1997) pointed out that if the optimum number of hidden nodes on 
a single layer is larger than 20, another hidden layer may be needed and a 
portion of the nodes can be moved to the other hidden layer (Staufer and 
Fischer 1997).

Another key factor is the number of nodes. Various strategies have been 
discussed to determine of the number of nodes for each hidden layer, but 
few of them are widely accepted (Richards and Jia 2006). One approach tak-
ing into account both the number of input nodes and output nodes seems to 
be more suitable for remote sensing classification (Eastman 2003; Weng and 
Hu 2008). From their research, the number of nodes in the hidden layer can 
be estimated as

	 N INT N Nh i o= × 	 (2.11)

where Nh denotes the number of nodes in the hidden layer, Ni is the number 
of nodes in the input layer, and No is the number of nodes in the output layer.

After the structure is determined, a learning algorithm should be designed 
and related parameters should be set, so that the MLP can learn the prior 
knowledge from the training data set and obtain a better ability for clas-
sifying other datasets. Thus, the learning method is also a key factor for 
the success of the MLP. The backpropagating (BP) learning algorithm is a 
widely used approach that employs the generalized delta rule (Richards 
and Jia 2006). After the learning/training process, all the knowledge about 
the classes should be contained in the weights of all the nodes in the MLP 
model. Finally, in order to optimize the learning process and the classifying 
procedure, different parameters should be given to the MLP, including the 
learning rate, the momentum factor, and the threshold for the accuracy level 
(Richards and Jia 2006; Weng and Hu 2008).

2.2.3.2 � SOM

SOM is another type of ANN and is also a data clustering technique. SOM 
has been successfully applied to estimation of impervious surfaces from 
remote sensing images (Hu and Weng 2009). Unlike MLP, SOM has only two 
layers, the input layer and the output layer. The input layer corresponds to 
the input features vector such as the image bands, while the output layer 
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consists of a 2-D array, which is often a square. The output layer is a competi-
tive layer where each neuron corresponds to a class. Between the input layer 
and the output layer, each neuron in the output layer is connected to all the 
neurons in the input layer, and the connection weight between each pair of 
neurons falls into [0, 1].

During the learning stage, the construction of a SOM includes four main 
steps (Hu and Weng 2009). First, a coarse tuning process is conducted to 
determine the weights of all the connections between the neurons in the 
input layer and output layer. Second, a labeling procedure is carried out to 
assign one class label to each neuron in the output layer. The majority voting 
approach using training dataset is often used to determine the class label 
of each neuron. Third, a fine-tuning process is conducted to improve the 
connection weights in order to increase the discriminability of the decision 
boundaries and the learning vector quantization (LVQ) approach is often 
adopted. Finally, the trained SOM is built and can be applied to predict the 
class label of unknown data.

The construction of an effective SOM lies in several important factors. 
First, the map size of SOM in the output layer should be determined. In the 
study of Hu and Weng (2009), a size of 4 × 4 was used by testing a number 
of different map sizes. Other parameters should be set manually including 
initial neighborhood radius, minimum learning rate, and maximum learn-
ing rate. Second, there are different methods during the tuning processes to 
trigger the competitive layer neurons using the connection weights and the 
input features. Two commonly used methods, including SOM commitment 
(SOM-C) and SOM typicality (SOM-T), were tested for impervious surfaces 
estimation previously (Hu and Weng 2009).

2.2.4 � Support Vector Machine

Unlike conventional empirical risk minimization (ERM) methods such as 
the ANN, the support vector machine (SVM) originally comes from the 
structural risk minimization (SRM) principle proposed by (Vapnik 1995). 
The basic idea of the SVM is to map multidimensional data into a higher 
dimensional space, in which there is a hyperplane that can be used to lin-
early separate the original data, thereby maximizing the margin between 
different classes (Vapnik 1998). The theory of SVM has been described exten-
sively in previous reviews (Hsu et al. 2007; Vapnik 1998; Weston and Watkins 
1999), and the SVM approach employed in this chapter was described by Hsu 
et al. (2007). In particular, SVM can work without a kernel function if the data 
is linearly separable. Otherwise, a kernel function is needed to map the data 
into a higher dimensional space where the data is linearly separable. The 
success of classification using SVM was recognized to depend on the param-
eter of the penalty (C) and the Gamma (G) in the kernel function.

First, the training data can be labeled as {xi, yi}, i = 1, …, l, yi ∈{−1, 1}, xi ∈Rd, 
where xi is a vector of the data, like the spectral values for each pixel, and yi 
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is its class type for this pixel. For the linearly separable case, a hyperplane 
should exist and satisfy w · x + b = 0, where w is normal to the hyperplane. 
Moreover, |b|/||w|| is the perpendicular distance from the hyperplane to 
the origin, and ||w|| is the Euclidean norm of w. Therefore, all the data in 
this hyperplane should satisfy the following constraints:
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Then these two constraints can be combined into a single one:

	 yi (xi · w + b) −1 ≥ 0	 (2.13)

The goal of SVM is to find such a hyperplane that creates the maximum 
margin between two classes of data, and this hyperplane is called the opti-
mal separating hyperplane (OSH). The procedure of finding the OSH in the 
training process can be represented as the following quadratic optimization 
problem:
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To solve this optimization problem, it can be converted into an equivalent 
Lagrange dual problem (LDP), with the following form:
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, 0 ≤ αi ≤ C, and i = 1, 2, …, l.

After solving the problem, a final decision about other data can be made 
with the following function:
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In the above equations, αi represents the Lagrange multipliers, C is the 
penalty for misclassification, and n is the number of support vectors that 
determine the OSH. K(xi,xj) is the kernel function that can map the data into 
a higher dimension. There are three classical kernel functions often used: the 
polynomial kernel function, the radial basis kernel function, and the sig-
moid kernel function. The success of classification using SVM has been rec-
ognized to depend on the parameter of the penalty (C) and the Gamma (G) 
in the kernel function.

The SVM described above is the binary SVM and is only suitable for sepa-
rating two classes. Thus, a multiclass version of the SVM is needed for the 
classification task in our case. Actually, there have been different approaches 
converting the binary SVM into a multiple-class version, and among them 
the one-against-rest method has been widely used to solve this type of prob-
lem (Weston and Watkins 1999). The basic idea is to use multiple binary 
SVMs, and each would consider a certain class as the first class while treat-
ing other classes as the second class. We can then get one hyperplane from 
each binary SVM, and by combining all these hyperplanes, all classes can be 
separated in the hyperspace.

In this book, the same optical and SAR data used in the MLP was used 
as an input for the SVM in order to compare the effectiveness of these two 
methods. For the ETM+ image, the six bands (30 m × 30 m) were input into 
the SVM. For the ASAR data, speckle filtering and texture analysis with the 
GLCM method in Section 3.1 was also applied to obtain the texture features 
of the ASAR data. These texture images were then used as input for the SVM.

2.2.5 � Classification and Regression Tree

The basic idea of a classification and regression tree (CART) is to grow a 
binary tree by a recursive partitioning process starting from a tree node 
(Breiman et al. 1984). CART is built by growing two children nodes from one 
parent node recursively. The Gini index is often used to measure the impu-
rity of a node when building up the node (Breiman et al. 1984). CART can be 
applied in a classification task or regression task depending on categorical 
attributes or numeric attributes. CART has been applied to remote sensing 
image classification and was proven to obtained good accuracy with good 
predictability (Huang et al. 2002). The application of CART in impervious 
surfaces was first conducted by Yang et al. (2003a) in a regression task to esti-
mate the percentage of impervious surfaces. Their research concluded that 
CART was able to obtain consistent and acceptable accuracy in three differ-
ent study areas (Yang et al. 2003a). Moreover, it was found that CART could 
finish the task in only a limited computing time, indicating its great potential 
for large-scale mapping of impervious surfaces (Yang et al. 2003a).
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2.2.6 � Object-Oriented Analysis

Object-oriented analysis, also known as object-based analysis, was proposed 
for very-high-resolution remote sensing image classification (Benz et al. 
2004). Its successful applications compared with pixel-based methods lies in 
the basic idea of analyzing and classifying the remote sensing images based 
on the object level, which produces good classification results without the 
noticeable noise phenomena that are common in those results from pixel-
based classification. There are typically three steps in an object-oriented 
analysis. First, it begins with the segmentation of images by dividing the 
images into a set of separated regions or objects, which are composed of a 
set of pixels. Second, feature extraction is applied to all the objects to extract 
various features such as spectral features (e.g., reflectance mean and NDVI) 
and spatial features (e.g., texture features, shape features, and topographi-
cal features). A number of methods are available for extracting both spec-
tral and spatial features from the objects. Third, a classification procedure 
is conducted on the objects to group them into different classes based on 
the features extracted during the second step. Commonly used classification 
methods include membership function approach and the nearest neighbor 
classifier. The applications of object-oriented analysis on urban land cover 
classification and impervious surface estimation have been conducted in 
some studies (Hu and Weng 2009; Lee and Warner 2006; Myint et al. 2008, 
2011). It was proven that object-oriented analysis was superior to pixel-based 
classification approaches for high-resolution images.

The successful application of object-oriented classification depends on many 
factors, such as the settings of key parameters and the selection of methods. 
First, one of the most important parameters to set before segmentation is 
the segmentation scale. It is known that the optimal scale for segmentation 
may be different in different applications. Moller et al. (2007) proposed an 
approach to determine the optimal segmentation scale based on trial-and-
error tests and the comparison index (Moller et al. 2007). However, there are 
no widely used and accepted methods that can determine the optimal scale 
for various applications (Myint et al. 2011). One of the most frequently used 
segmentation methods is the multiresolution segmentation implemented in 
Definiens, where the segmentation scale should be provided by users (Myint 
et al. 2011). Secondly, the feature extraction and feature selection of objects. 
There are a number of features that can be extracted from the objects seg-
mented in the first step. How to select the features that are effective for accu-
rate classification is very important. In the software Definiens, all kinds of 
object features such as texture features, geometry features, position features, 
and hierarchy features can be calculated. However, which features are effec-
tive and which features may be negative for classification require more stud-
ies in various applications.
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2.2.7 � Multiprocess Classification Model

The multiprocess classification model (MPCM) was proposed to improve 
the mapping accuracy of impervious surfaces at the pixel level (Luo and 
Mountrakis 2010; Mountrakis and Luo 2011). MPCM is actually a hybrid mul-
tiprocess model, which generally includes two classification processes, a priori 
classification and a posteriori classification. The general idea is to incorporate 
intermediate inputs extracted from the a priori classification results, such as 
linear features like roads and distance-based features. These intermediate fea-
tures can be used to enhance the spectral information in optical remote sens-
ing images to improve the a posteriori classification of impervious surfaces.

The successful application of MPCM model depends on the design of the 
a priori classifier, the intermediate feature extraction from the a priori classi-
fication, and the a posteriori classifier. Firstly, the a priori and a posteriori clas-
sifiers can be selected from existing classifiers such as ANNs. In previous 
studies, the MLP was chosen as the a priori and a posteriori classifier (Luo and 
Mountrakis 2010; Mountrakis and Luo 2011). Second, intermediate features 
include texture-based features, distance-based features, and road-based fea-
tures. In the research of Luo and Mountrakis (2010), the GLCM-based texture 
measures were extracted from the a priori impervious surface classification 
results. Distance between nonimpervious surface and impervious surface 
pixels were calculated as another feature. Line-shape features were identi-
fied as road-based features. All these features were treated as intermediate 
inputs (IIs) to the a posteriori classifier. In their later study (Mountrakis and 
Luo 2011), the extraction of IIs was improved. For instance, road structures 
were further analyzed to calculate road segment properties such as segment 
length and directions. The texture features were extracted using directional 
dilation with morphological operations. Their research showed that the 
incorporation of IIs was able to increase the mapping accuracy of impervi-
ous surfaces by more than 3% (Luo and Mountrakis 2010; Mountrakis and 
Luo 2011).

2.3 � ISE Using Multiple Data Sources

2.3.1 � Optical and Lidar Data

Lidar has had wide applications in urban remote sensing in recent years due 
to its unique advantages. One of the unique features of lidar is its point cloud 
about elevation data. The other advantage comes from its very high resolu-
tion, generally higher than 0.5 m, since lidar data was currently obtained by 
aerial plane, which technically produce higher spatial resolution than satel-
lites. A number of studies have been conducted where lidar data was fre-
quently used to extract urban road networks, buildings, and tree structures 
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with high accuracy (Clode et al. 2007; Elberink and Vosselman 2009; Lee et 
al. 2008; Miliaresis and Kokkas 2007; Tiwari et al. 2009). From our previous 
discussion about the MPCM approach for impervious surface estimation, it 
is easy to understand that these road networks, buildings, and trees can be 
incorporated into optical remote sensing data to improve impervious surface 
mapping. Multispectral aerial photograph and lidar data were combined to 
extract impervious surfaces (Germaine and Hung 2011; Hodgson et al. 2003). 
Previous studies showed that the additional use of lidar data was able to 
increase overall accuracy by 3% and the Kappa coefficient by 5.9%. It indi-
cated that the improvement mainly came from the more accurate detection 
of buildings and trees.

2.3.2 � Optical and SAR Data Using Random Forest

SAR remote sensing works in all-weather, all-day conditions, and thus is gain-
ing an increasingly wide range of applications in different fields. SAR images 
can provide useful information about urban areas by reflecting the surface 
characteristics of urban features (Calabresi 1996; Henderson and Xia 1997; 
Soergel 2010; Tison et al. 2004). Various approaches are used to extract infor-
mation about urban areas (Corbane et al. 2009; Dekker 2003) using both high 
and medium resolutions of SAR images (Dell’Acqua and Gamba 2003). These 
approaches include both pixel-by-pixel analysis and segmentation analysis 
that focused on the textural features of SAR images, and it is reported that seg-
mentation approaches are favored over pixel-by-pixel approaches (Lombardo 
et al. 2003; Stasolla and Gamba 2008). Furthermore, methods of textural anal-
ysis for segmentation approaches have been comprehensively summarized 
in the literature (Dekker 2003; Stasolla and Gamba 2008). However, extracting 
urban information from SAR images remains a difficult task because of the 
geometric perturbations and speckle noises (Tupin and Roux 2003).

In general, fusion methods of multiple data sources (including remotely 
sensed data in urban areas) can be performed on three different levels: the 
pixel level, feature level, and decision level. Pixel-level fusion is not appro-
priate for SAR images, due to the existence of speckle noises. In feature-level 
fusion, several approaches have been proposed, including layer-stacking 
and ensemble-learning methods (e.g., bagging, boosting, AdaBoost, and ran-
dom forest [RF] [Hall and Llinas 1997; Rokach 2010]). The ensemble-learning 
methods can be combined with different classifiers (e.g., ANN and SVM 
[Rokach 2010]). For decision-level fusion, various weighting methods (e.g., 
majority voting, entropy weighting, and performance weighting) and the 
Dempster-Shafer theory have been applied. However, conventional classi-
fiers with a layer-stacking technique are not appropriate in this case because 
optical reflectance and SAR backscattering data do not correlate (Zhang 
et al. 2010). Among these methods, the decision tree (DT) method will be 
given more attention, while RF has been reported to perform very well in the 
fusion of optical and SAR data (Waske and van der Linden 2008).
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The general strategy of RF was proposed by (Breiman 2001), which is based 
on randomly resampling the input training data. RF has been applied in 
diverse remote sensing studies (Gislason et al. 2006; Ham et al. 2005; Pal 
2005), and is proven to have comparable performance to more complex meth-
ods such as SVM, which is much more time-consuming (Chehata et al. 2009; 
Guo et al. 2011; Waske et al. 2009). Several advantages make RF suitable for 
remote sensing studies (Guo et al. 2011; Yu et al. 2011). First, RF does not 
overfit when the number of trees increases (Breiman 2001). Second, RF does 
not need any feature selection since a random selection of features are built 
in (Yu et al. 2011). Third, RF makes no distributional assumptions about the 
datasets and can handle situations where the training dataset is small while 
the predicted dataset is large (Cutler et al. 2007).

The basic idea of RF is to grow multiple decision trees on the random sub-
sets of the training data and related variables (Stumpf and Kerle 2011). A 
brief description of the RF algorithm is as follows:

Input: N training samples, with M variables/features in each sample, 
and µ is the size of subset of training samples, µ < N.

Output: A trained RF with T decision trees:

	 1.	Choose a training subset for a tree with replacement by T iterations 
in all training samples.

	 2.	For each node, randomly choose m variables to determine the deci-
sion rules at that node. Calculate the best split based on these m vari-
ables in the training subset (m < M).

	 3.	Return to Step 1 until T iterations end.

During the first step, about one-third of training samples are left out by the 
random selection; these samples are called out-of-bag (OOB) samples (Yu et 
al. 2011). The out-of-bag samples are used as the testing data for the grown 
decision tree.

In this study, one training sample corresponds with a location of a pixel, 
with the M variables/features representing the feature information from 
both optical and SAR images. In particular, a training sample in this case 
can be expressed as a vector consisting of the following two components 
(two groups of features): (1) reflectance of each optical band and (2) texture 
features of the ASAR images. The first group is from optical images and the 
second is derived from SAR data. For the texture features of the ASAR image, 
the GLCM is applied to extract the texture features (Haralick et al. 1973).

The success of RF depends on the prediction accuracy of each decision tree 
and the correlation between different decision trees (Breiman 2001). In order 
to reduce correlation, two random selection procedures are employed (Yu 
et al. 2011): (1) a random selection of train samples in each of the T iterations 
to grow each decision tree and (2) a random selection of features to select 
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m features to determine each node in a tree. Therefore, two parameters are 
significant for the success of the RF in the fusion of optical and SAR images: 
the number of decision trees (T) and the number of features (m) at each node 
for spilling.

For the number of trees, it was reported that T can be any value defined by 
the user (Pal 2005). For the number of features, previous studies suggested 
m to be the root of the total number of features (Gislason et al. 2006; Stumpf 
and Kerle 2011). However, in previous applications of RF, there were often a 
number of features, while the number of features in this case for the ISE is 
very limited. Thus, it is still not clear what the optimal number should be 
for the random selection of features. Therefore, in this book, a quantitative 
analysis is designed to test the impacts of T and m on the performance of RF 
for the fusion of optical and SAR data for ISE.

In addition, the splitting rule is also important for the selection of features. 
There are several selection approaches in the literature, such as Quinlan’s 
information gain ratio (Quinlan 1986), the Gini index (Breiman 1984), and 
Mingers’ G statistic (Mingers 1989). The Gini index is the most frequently 
used for RF as it measures the impurity of an attribute by searching the larg-
est class and isolating it from the rest of data (Breiman 1984; Pal 2003). In 
this book, the Gini Index is employed to measure the impurity for each node 
to find the best combination of features (variables). The following equation 
describes the Gini index of note t (Zambon et al. 2006):

	 Gini( ) ( )t p pi i
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L

= −
=
∑ 1

1

	 (2.17)

where pi denotes the relative frequency of each class in the training subset and 
L is the total number of classes. pi can be determined by dividing the total num-
ber of samples of the class i by the total number of samples in the subset.

In this chapter, the determination of parameters, both T and m are vali-
dated and optimized for the application to optical SAR fusion in terms of ISE.

2.4  Conclusion

This chapter reviewed the literature related to research on impervious sur-
faces. First, the significance of impervious surfaces was introduced by sum-
marizing their influence on the environment and socioeconomic studies. 
Focus was given to the hydrological impacts and atmospheric impacts of 
urban impervious surfaces. Second, the climatic and phenology characteris-
tics of tropical and subtropical regions were briefly reviewed to show some 
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of its unique features that are different from those in the temperate regions 
many previous studies were focused on. Third, an overview of land cover 
diversity was also presented to describe the impacts of the rapid urbaniza-
tion process. Finally, a technical review was presented to summarize the ISE 
approaches using remote sensing technology. Both subpixel and per-pixel 
approaches were reviewed. As the per-pixel approach will be used in this 
book, a more detailed introduction was given to the per-pixel classification 
techniques with a focus on the feature extraction approaches of remote sens-
ing images. Moreover, previous research on the synergistic use of optical 
and SAR data were also reviewed.

Generally, thanks to the intensive research efforts of the last decade, the 
significance of urban impervious surfaces has been widely recognized and 
assessed in numerous studies related to many urban regions, with numerous 
approaches proposed. However, most of this research focused on the mid-
latitude cities where many important urbanization events have happened, 
despite the fact that with the rapid development of the global economy, more 
and more metropolitans are appearing in low-latitude zones such as the 
subtropical regions (e.g., South China, South America, South Africa, and the 
eastern part of Australia), where the climatology and phenology are very dif-
ferent from those in old urbanized areas. Moreover, the urbanization process 
in these newly developed metropolitans is often dramatic and diverse, mak-
ing the urban land surface even more diverse and complex. Consequently, 
whether existing approaches are still effective for ISE in urban areas in tropi-
cal and subtropical regions becomes unclear given the special characteristics 
of the natural conditions and humid activities. More important, what kind 
of methodology is suitable for estimating the urban impervious surfaces in 
these tropical and subtropical regions? This book focuses on these investiga-
tions and tries to find appropriate solutions to address these issues.
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3
Methodology of Combining 
Optical and SAR Data

3.1 � Study Area

Six cities from four countries located on the tropical and subtropical areas 
(Figure 3.1) were carefully chosen as the study sites of this research. These cities 
are Guangzhou, Shenzhen, Hong Kong, Sao Paulo, Mumbai, and Cape Town. A 
basic description about these six cities is given in the following sections includ-
ing their geography, climate, population, economy, and urban planning.

3.1.1 � Site A: Guangzhou

Guangzhou, the capital city of the Guangdong province, China, is located 
at the center of the PRD metropolitan. The PRD is located downstream of 
the Pearl River, and is known as the third largest metropolitan in China, 
enjoying a tremendously fast development during the past 30 years. The 
region has had a quick urbanization process, with a population of over 
19 million and an area of over 21,000 km2 (Fan et al. 2008). However, due to 
strong interactions between human activities and the environment, serious 
environmental issues have also emerged and are causing a series of environ-
mental problems, including air pollution and water pollution (Zhang et al. 
2008). Nevertheless, unlike many other metropolitans in the world, the PRD 
is located in a subtropical humid area, with long period of cloudy weather 
throughout the whole year and different characteristics of plant phenology 
(Fan et al. 2008). In the PRD, about 80% of precipitation occurs during April 
to September, which is known as the wet season, while only about 20% of 
rainwater occurs from October to the following March, which is known as 
the dry season (Cai et al. 2004). Therefore, the seasonal effects of ISE from 
remote sensing imagery are likely to be different from those found in previ-
ous research, which was conducted mainly in midlatitude regions. Three 
sites in the PRD, Guangzhou, Shenzhen, and Hong Kong, have been chosen 
as the study sites in this book, with detailed descriptions in the following 
sections.
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Guangzhou has undergone a dramatic urbanization process and is the 
third largest city in China. The population of Guangzhou reached 12.78 mil-
lion in 2010 (Brinkhoff 2011). The study site selected in this research is located 
in the Huangpu District of Guangzhou (Figure 3.2), which is a medium 
urbanized area. The land cover in this site is characterized by residential 
areas, small rivers, farmland, small hills, and small lakes and water pools 
with seasonal waters. Impervious surfaces can be seen from the Landsat 
ETM+ image with both high and low reflectance. Within this study, this 
site was selected to evaluate ISE using Landsat ETM+ and ENVISAT ASAR 

Sao Paulo
Cape Town

Mumbai
Guangzhou
Shenzhen
Hong Kong

FIGURE 3.1
Locations of the six cities from four countries in this study.

(a) (b)

FIGURE 3.2
(a) Landsat ETM+ (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Guangzhou.
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images, as well as to investigate the seasonal effects of the plant phenology 
and climate of the tropical and subtropical regions.

3.1.2 � Site B: Shenzhen

Shenzhen is located in the southern part of the PRD and to the north of 
Hong Kong. Shenzhen is China’s first and most successful special eco-
nomic zone (SEZ), which has been highly urbanized in the past three 
decades. Commercial and industrial areas are intensively distributed all 
over the city due to the rapid development of the economy (Figure 3.3). 
The selected site is on the boundary of Shenzhen and Hong Kong, which 
is highly urbanized and is characterized with mainly commercial, residen-
tial, and greening areas of the city. SPOT-5 and ENVISAT ASAR images in 
Shenzhen were selected to test the effectiveness of the methods proposed 
in Section 3.5.

3.1.3 � Site C: Hong Kong

Hong Kong is situated in the southern part of the PRD on the coast of the South 
China Sea. It consists of three main parts, the New Territories, Kowloon, and 
Hong Kong Island. Even though Hong Kong has been intensively urbanized, 
it is a mountainous city with a large area of mountains distributed all over 
the city. The impervious surface percentage can reach up to 100% in urban 
areas such as Kowloon, but is only moderately urbanized with a moderate 
impervious surface percentage in the rural areas such as the New Territories. 
In this study, a site located in the Yuen Long in the northern part of the New 
Territories was selected (Figure 3.4). This study site is typical in Hong Kong 

(a) (b)

FIGURE 3.3
(a) SPOT-5 (RGB: 4-1-2) and (b) ENVISAT ASAR images of the study site located in Shenzhen.
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as it is moderately urbanized and includes both plain and mountain areas. 
Land covers in this study site include residential areas, farmland, moun-
tains, and coastal sea surface. SPOT-5 and TerraSAR-X images in this area 
are used to address the ISE and evaluate comprehensively the effectiveness 
and performance of the synergistic use of optical and SAR data.

3.1.4 � Site D: Sao Paulo

Sao Paulo is located in southeastern Brazil and is the largest city in Brazil by 
population and gross domestic product (GDP). Sao Paulo has a humid sub-
tropical climate and is significantly influenced by monsoons, and the aver-
age annual precipitation is about 1454 mm. The Sao Paulo metropolitan area 

(a) (b)

FIGURE 3.4
(a) SPOT-5 (RGB: 3-1-2) and (b) TerraSAR-X images of the study site in Hong Kong.

(a) (b)

FIGURE 3.5
(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Sao Paulo.
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has been undergoing a rapid urbanization process since the twentienth cen-
tury. However, urbanization has brought significant environmental impacts 
to the ecosystem, such as the deforestation of rainforest (Torres et al. 2007). 
Therefore, the estimation of impervious surfaces would be beneficial for 
urban planning and environmental management of the city. In this study, 
Landsat TM, ENVISAT ASAR, and TerraSAR-X are used synergistically to 
extract the impervious surfaces of Sao Paulo. Figure 3.5 shows the Landsat 
TM and ENVISAT ASAR data in this study area.

3.1.5 � Site E: Mumbai

Mumbai is located in western India, with a total urban area of approximately 
465 km2. Mumbai has a tropical wet and dry climate, with an average annual 
precipitation of about 2167 mm and an average annual temperature of 27.2°C. 
It is the main city of western India and a leading economic and financial cen-
ter (Bhagat 2011; Moghadam and Helbich 2013). The population of Mumbai 
has nearly doubled in the last four decades according to the Indian Census 
of 2011 (Moghadam and Helbich 2013), with an increasing trend to reach 
about 27 million by 2025 (United Nations 2012). However, there are many 
problems introduced by the rapid urbanization in Mumbai, such as urban 
fragmentation (Gandy 2008). Therefore, remote sensing of the urbanization 
process of Mumbai would be very helpful to monitor the urban sprawl in 
order to improve the urban planning and management of Mumbai. In this 
study, Landsat TM, ENVISAT ASAR, and TerraSAR-X are used to estimate 
the impervious surface distribution of Mumbai. Figure 3.6 shows the Landsat 
TM and ENVISAT ASAR data in this study area.

(a) (b)

FIGURE 3.6
(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Mumbai.
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3.1.6 � Site F: Cape Town

The city of Cape Town is located in the southwestern part of South Africa, 
covering about 2460 km2. It is located at approximately latitude 33.55°S and 
longitude 18.25°E, which is nearly on the boundary of the subtropical region 
in the Southern Hemisphere. Cape Town enjoys a Mediterranean climate 
with warm and dry summers and cool and wet winters. The population of 
Cape Town was about 3.5 million in 2008 (Rebelo et al. 2011). Cape Town has 
been undergoing a rapid urbanization process with significant land use/land 
cover changes (Rebelo et al. 2011). Consequently, this rapid urbanization has 
caused great environmental impacts, especially damage to the biodiversity 
(Rebelo et al. 2011). Satellite monitoring of the urban sprawl in Cape Town 
will be important in order to monitor these impacts in a timely manner. In 
this study, Landsat TM, ENVISAT ASAR, and TerraSAR-X will be used to 
estimate the impervious surface distribution of Cape Town. Figure 3.7 shows 
the Landsat TM and ENVISAT ASAR data in this study area.

3.2 � Satellite Data

3.2.1 � Landsat ETM+

The Landsat ETM+ images had one panchromatic band and six bands with 
an image pixel size of 30 m × 30 m. In this study, only the 30 m data was used. 
The ETM+ image was acquired on December 31, 2010. In order to preprocess 
ETM+ images, a process should first be applied to get rid of the stripes on 

(a) (b)

FIGURE 3.7
(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Cape Town.
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the eastern and western edges of each scene that are caused by the foot-
prints (location and spatial extent) of each band due to scan line corrector 
(SLC) failure. For this reason, the study area was located in the middle of 
each scene where there were no stripes, and thus no stripe removal operation 
was applied. We assumed that the atmospheric conditions were clear and 
homogeneous and the small area of clouds would not significantly impact 
the whole scene of the image, and thus no atmospheric correction was per-
formed (Wu and Murray 2003).

3.2.2 � SPOT-5

SPOT is a high-resolution optical satellite family launched by France. SPOT-5 
was launched on May 4, 2002, with a higher spatial resolution of 2.5 and 5 m in 
panchromatic mode, and 10 m in multispectral mode. The SPOT-5 image used in 
this study was in a multispectral mode image, at precision 2A level, and was 
obtained on November 21, 2008. Therefore, the pixel size of the SPOT-5 data in 
this study is 10 × 10 m. The multispectral SPOT-5 data has four image bands 
located in the green region (500–590 nm), red region (610–680 nm), near-infrared 
region (780–890 nm), and shortwave infrared region (1580–1750 nm). The image 
was projected under the coordinate system of World Geodetic System 1984 
(WGS84) and Universal Transverse Mercator (UTM) (Zone 50N).

3.2.3 � ENVISAT ASAR

ASAR is a radar instrument on the ENVISAT satellite operated by the 
European Space Agency (ESA). ENVISAT was launched on March 1, 2002 with 
a projected mission duration of 5 years and continued to work for 10 years. 
Even though it stopped operating on April 8, 2012, the archive data is still 
beneficial for this study due to the nature of the study and the selected time 
period. ASAR operates in the C band (4–8 GHz) and generally has five oper-
ation modes: alternating polarization (AP) mode, image (IM) mode, wave 
(WV) mode, suivi global (GM) mode, and wide swath (WS) mode, where AP, 
IM, WV, GM, and WS are the identity codes. Raw data from these operation 
modes is the Level 0 data, and they can be further processed to Level 1 or 
even higher levels of data product by different treatments. The ASAR data 
used in this study is the wide swath mode (WSM) and IM precision (IMP) 
data, which is a Level 1b data product. The data was received by the Satellite 
Remote Sensing Receiving Station at the Chinese University of Hong Kong. 
The ASAR WSM data was obtained on September 23, 2010, on the descend-
ing direction with vertical transmit/vertical receive (V/V) polarization and 
a pixel size of 75 × 75 m. The ASAR IMP data was obtained on November 19, 
2008, on the ascending direction, Track-25 of ENVISAT, with V/V polariza-
tion and a pixel size of 12.5 × 12.5 m. Additionally, due to the uncertainty of 
speckle noises in SAR images, the enhanced Lee filter is selected to filter the 
speckle noises. The enhanced Lee filter is an improved version of the Lee 
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filter that was designed to better preserve texture information, edges, linear 
features, and point targets in SAR images (Lee 1983). The enhanced Lee filter 
is an adaptive filter that was proven to be more suitable for preserving radio-
metric and textural information than other speckle filters (Lopes et al. 1990; 
Xie et al. 2002). The ASAR image was then geocoded and projected with the 
georeference system of the WGS84 and UTM (Zone 50N).

3.2.4 � TerraSAR-X

TerraSAR-X (TSX) is a German earth observation satellite launched on June 
15, 2007 and is still in operation. TSX operates in the X band (9.6 GHz) and has 
three main imaging modes: SpotLight mode, StripMap mode, and ScanSAR 
mode. The TSX image used in this study is in StripMap mode, obtained on 
November 16, 2008, with a spatial resolution of 3 × 3 m, and the scene size is 
30 km (width) × 50 km (length). The TSX image was geocoded with Next ESA 
SAR Toolbox (NEST) 4C-1.1 software developed by ESA under the coordinate 
system of WGS84 and UTM (Zone 50N). Geometric correction was also con-
ducted by the Range-Doppler Terrain Correction in NEST with digital eleva-
tion model (DEM) data. Additionally, due to the uncertainty of speckle noises 
in SAR images, the enhanced Lee filter is selected to filter the speckle noises.

3.3 � Digital Orthophoto Data

The orthophoto is derived from aerial photographs that were taken mainly 
at a flying height of 2400 m in Hong Kong, and were named the Digital 
Orthophoto DOP 5000 series. The whole land area of the Hong Kong Special 
Administrative Region (HKSAR) is covered by 190 tiles of DOP 5000 images 
with a specific tile number for each image. The original DOP 5000 data has 
a ground pixel size of 0.5 × 0.5 m and is georeferenced in the coordinate 
system of the Hong Kong 1980 Grid. The DOP 5000 photo used in this study 
was taken on November 12, 2008, and was located on the northwestern part 
of Hong Kong with a tile number of 6-NW-A. To use the DOP 5000 data in 
this study, a coordinate system transformation was conducted on the data to 
transform it from Hong Kong 1980 Grid to UTM50N with WGS84.

3.4 � In Situ Data

Field work was conducted on January 7, 2013 (winter) to collect information 
about the spectral reflectance and spatial texture of different land covers. 
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The field work was carried out in the Yuen Long district located in north-
western Hong Kong (Figure 3.8).

A Global Positioning System (GPS) device (Leica Zeno) was employed to 
locate the geocoordinates of the fields (Figure 3.9). Using a Nokia cell phone 
(Nokia 5320) to connect to the local differential GPS (DGPS) reference station 
during the field work, the DGPS technique was used to improve the loca-
tion accuracy, which was up to 0.4 m. A spectrometer produced by Analytical 
Spectral Devices, Inc. (ASD) was employed to collect the hyperspectral reflec-
tance of each land cover. The field of view (FOV) of the ASD spectrometer 
is 25 degrees and the area to be measured was set as 0.5 × 0.5 m according 
to the resolution of the digital orthophoto data, and therefore, the height of 
the ASD spectrometer should be 1.13 m (= 0.25/tan12.5°) from the ground. 
Moreover, a digital camera (Canon-Digital IXUS 115 HS) was used to take 

FIGURE 3.8
Image from Google Earth showing the area where field data was collected.

(a) (b) (c) (d)

FIGURE 3.9
Devices employed for field data collection: (a) ASD spectrometer, (b) Leica Zeno, (c) Nokia cell 
phone, and (d) Canon camera.
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photos of each land cover, which were used to help analyze the color, texture, 
and shape features. During the field work, six main land cover types were 
considered, including dark impervious surfaces (i.e., asphalt road and old 
concrete roads), bright impervious surfaces (i.e., new concrete roads), vegeta-
tion (i.e., shrubs and grasses), farmland (i.e., crop), water surfaces (i.e., rivers 
and water pools), and bare soil in a field under construction. In this book, the 
collected field data were used to validate the results of visual interpretation 
of the satellite images.

3.5 � Framework of Methods

Figure 3.10 shows the framework of methodology of this study, illustrating 
the mechanism of land cover diversity, the responses of both optical and SAR 
remote sensing, and the ISE from remote sensing images. The main idea shown 
in Figure 3.10 is that the difficulties of ISE from satellite images are caused by 
the diversity of land covers and their reflectance in the images. Moreover, 
land cover diversity is caused by the phenology and the climatology of tropi-
cal and subtropical regions and the extreme human activities surrounding 
urbanization. Meanwhile, the phenology is affected by the climatology, which 
mainly includes the characteristics of temperature and precipitation.

Therefore, the methodology of this study includes three parts: (1) to inves-
tigate the effects of phenology and climatology on ISE, aiming at finding 
the most suitable season for ISE from satellite images, (2) to investigate the 
characteristics of urban land covers, which are the direct cause of the diffi-
culties in the accurate estimation of impervious surfaces, and (3) to address 
the methods for synergizing optical and SAR images in order to improve the 
accuracy of ISE.

3.5.1 � Per-Pixel Modeling of Impervious Surfaces

Impervious surface mapping at a per-pixel level is actually a classification 
process where impervious and nonimpervious surfaces are a combination 
of various land cover types. Conventional LULC includes vegetation, urban 
areas, and water, and each land cover type shares similar spectral and spatial 
characteristics. Therefore, they are often identified individually during the 
classification procedure. However, impervious and nonimpervious surfaces 
consist of various land cover materials. For instance, impervious surfaces 
can be made up of dark materials (e.g., asphalt and old concrete) and bright 
materials (e.g., new concrete and metal), while nonimpervious surfaces are 
also very diverse in materials (e.g., vegetation, water, and base soils). In this 
study, a two-step approach is employed to estimate the impervious surfaces. 
First, six land cover types: dark impervious surfaces, bright impervious 
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FIGURE 3.10
Framework of the methodology of this research.

  



44 Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

surfaces, vegetation, water body, bare soil, and shaded areas, are identified 
with a classification procedure using RF. Second, a procedure is conducted to 
combine various land covers into impervious and nonimpervious surfaces.

In particular, shaded areas are treated as a single land cover type as they 
often have unique spectral and spatial characteristics. Moreover, since 
shaded areas may be impervious (e.g., roads and rooftops) or nonimpervi-
ous (e.g., greening areas), they are treated as nonimpervious surfaces in the 
second step of combination in this study. Therefore, dark impervious sur-
faces and bright impervious surfaces are combined as impervious surfaces 
and vegetation, water, bare soil, and shade are combined as nonimpervi-
ous surfaces. Additionally, because misclassification may happen not only 
between impervious and nonimpervious land cover types but also among 
different subtypes of impervious or nonimpervious types, the accuracy of 
classification before and after the combination operation may be different. 
Therefore, in this study, an accuracy assessment is conducted on the classi-
fication results before and after combining impervious surfaces and nonim-
pervious surfaces subtypes.

3.5.2 � Investigation of Seasonal Effects

The motivation of this study is to prove or reject two hypotheses. First, sea-
sonal changes of the landscape components should be less problematic in 
subtropical monsoon areas since vegetation and canopy change less among 
the seasons, while water may have an impact, as there are many variable 
source areas (VSAs). VSAs are those areas filled with water in rainy seasons, 
and bare soil is exposed in dry seasons (Frankenberger et al. 1999). Second, the 
sensitivity of the ISE may depend on different methods. In this book, the per-
pixel approach is adopted and two popular classifiers are selected, including 
ANN and SVM.

This book investigates the variation of ISE from different seasons of satel-
lite images and the seasonal sensitivity of different methods. Four Landsat 
ETM+ images of four different seasons are employed to estimate the imper-
vious surfaces at the pixel level. Seven land use types are defined to conduct 
the classification procedure according to the landscape of the study area. 
Table 3.1 gives a brief description about each land cover type, including 
water, vegetation, bare soil, clouds, shade, dark impervious surfaces, and 
bright impervious surfaces. In particular, clouds and shade are treated as 
one type of land cover, since they have unique spectral and spatial charac-
teristics compared with other types of land cover. As the region is undergo-
ing a dramatic urbanization process, a lot of bare soils appear on the areas 
under construction. Further, numerous cool roofing materials, which are 
light blue or white in color, are used to build up rooftops. These rooftops are 
designed to highly reflect the solar radiation in order to reduce the urban 
heat island effect. Thus, they appear to be bright impervious surfaces in 
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the  optical remote sensing data. ANN and SVM are then applied to clas-
sify the four seasonal changes of ETM+ images. After seven land use classes 
are available, a combining operation is employed to reclassify the five land 
use types into two types: the impervious surfaces and nonimpervious sur-
faces. During this period, the water body, vegetation cover, and bare soils are 
combined together to form the nonimpervious surfaces, while the dark and 
bright impervious surfaces are combined into the impervious surfaces class.

3.5.3 � Feature Extraction

3.5.3.1 � Conventional Feature Extraction

According to previous literature, segmentation methods are superior over 
pixel-by-pixel methods because segmentation methods take texture char-
acteristics into account (Dell’Acqua and Gamba 2003; Stasolla and Gamba 
2008). A texture characteristic is important for the interpretation of SAR data 
because the speckles in SAR data result in difficulties for the pixel-by-pixel 
approaches. Therefore, in order to extract complementary information for 
urban impervious surfaces from ASAR data, texture feature extraction 
is necessary and important. In this study, the popular GLCM approach 
(Haralick et al. 1973) is employed to analyze the texture features of the ASAR 
data. For the application of GLCM, the size of image block and the texture 
measures with GLCM have been a major issue (Marceau et al. 1990). In terms 
of the classification of remote sensing images in urban areas, it is reported 
that a window size of 7 × 7 pixels is suitable with a test on the resolutions 
from 2.5 × 2.5 m to 10 × 10 m (Puissant et al. 2005). Moreover, four texture 
measures: homogeneity (HOM), dissimilarity (DISS), entropy (ENT), and 
angular second moment (ASM) were identified as effective indicators for the 

TABLE 3.1

Definition of the Land Covers Used in This Study

Land Use Type Definition

Water Rivers, lakes, and other freshwater bodies
Vegetation Grain crops, vegetable crops, grass, and other agricultural land
Bare soil Land under construction with bare soils exposed
Clouds Small and fragmentary clouds that are difficult to remove
Shades Topographical shades and shades from tall buildings, trees, etc.
Dark impervious surfaces Rooftops, roads, and parking lots that are made of asphalt, 

concrete tile, and other materials with low spectral reflectance
Bright impervious surfaces Cool rooftops and green rooftops that are made of cool 

materials, such as metal, which are designed to highly reflect 
solar radiation

Note:	 Clouds and shade are treated as land covers since they have unique spectral and spatial 
characteristics compared with other land covers in satellite images.
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texture description of different urban land cover types (Puissant et al. 2005). 
Thus, in this study, the window size is set as 7 × 7 pixels, and four texture 
measures, HOM, DISS, ENT, and ASM, are employed.

3.5.3.2 � SAN Feature Extraction

3.5.3.2.1 � Concept of Shape-Adaptive Neighborhood

The neighborhood is a basic and key concept in image processing. However, 
previous feature extraction approaches using neighborhoods with regular 
shapes had some shortcomings that could lead to error because terrain objects 
may have different irregular shapes. As more attention has been paid to human 
cognition, the procedure of human vision has been considered and applied in 
image processing. Considering human vision, the color and shape of the target 
are very important. Human beings recognize different objects by their color 
characteristics first, then by their shape feature, and other features such as 
texture. This procedure of recognizing an object generally happens within a 
local neighborhood in the image. If the object is gray, then the shape charac-
teristics will be the most important features for human eyes because there are 
no colors with which to identify different objects. Based on this observation, 
the concept of SAN was proposed to start the procedure of feature extraction. 
Prior to the feature extracting procedure, color characteristics will be analyzed 
to determine the neighborhood of each pixel with an adaptive boundary.

Definition

A SAN is the neighborhood of a pixel containing but not necessarily centered 
on the pixel, whose shape is determined by the terrain object it represents 
(Zhang et al. 2013).

Figure 3.11 shows the concept of the SAN of a pixel (a), where the view 
port is used to represent the local range to search the SAN or the object. The 

(a) (b) (c) (d)

Point A Neighborhood of A View port

A

FIGURE 3.11
Illustration of a SAN of point A (a) in an irregular shape object, (b) in a rectangular object, 
(c) in a square object and (d) in a complex environment (e.g., sports ground).
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feature of a SAN only represents the feature of the central pixel (not always 
in the center). If the pixels in the SAN are of the same terrain object as the 
central pixel, the judgment is correct. In contrast, if there are some misjudged 
pixels in the SAN, this will affect only the classification of the central pixel 
without any impact on other pixels in the SAN.

After determining the SAN of a pixel, the feature of the SAN can be 
extracted, including the color, texture, and shape feature, which describe 
characteristics of the central pixel and will then be used in the classifying 
procedure. The mechanism of the determination of SAN is consistent with 
that of the on-off switch model in the attention mechanism of human vision 
(Solso et al. 2004). According to cognitive psychology research, in a local 
range containing an object of the on-off switch model, those parts that do not 
belong to the object will be filtered out and thus do not catch our attention. 
Only the object itself will be able to pass the on-off switch and then cause the 
so-called attention. This phenomenon has also been proven with some evi-
dence in neural experiments both in animals and humans (Solso et al. 2004). 
It is important to note that the SAN here is only suitable in those objects with 
no significant variation in color, or in the case of remote sensing images, 
with no significant variation in multispectral reflectance. However, a cer-
tain extent of variation is allowed because there is little variance in spectral 
reflectance (color), and this is the common case in reality. This situation can 
be handled with a heterogeneity-based threshold, which will be discussed 
in the following section.

3.5.3.2.2 � Determination of a SAN

3.5.3.2.2.1  Spectral Feature Transformation  Multiple spectral features are cru-
cial for the interpretation of remote sensing images. However, the problem 
of how to understand the information contained in different spectral bands 
becomes apparent when using visual interpretation, since a visible color (for 
human eyes) consists of only three components in existing popular color 
space (e.g., red, green, blue [RGB] and HSI). In this case, three of the bands 
are often assigned to be the red, green, and blue values used to generate 
a false-color image for visual interpretation of the image. Moreover, differ-
ent combinations of bands are attempted in order to discriminate between 
different objects. This RGB mode of mapping the spectral feature space is 
also called the color space, referred to as the color characteristics in visual 
interpretation.

As discussed above, determination of the SAN depends on the color 
characteristics. Heterogeneity is used to describe the color feature as fol-
lows. Conventionally, there are several color models, including RGB, hue, 
saturation, intensity (HSI), and hue, saturation, value (HSV). In the pro-
cessing of remote sensing images, the images are often transformed to the 
false-color composition; that is, in the RGB color space. However, according 
to the existing literature, the RGB color space is not consistent with human 
vision (Herodotou et al. 1999). A color point in RGB color space cannot really 
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represent the color recognized by human eyes as it corresponds differently 
from that of the human perception of color. Of these color spaces, the one 
closest to the human perception of color is HSV (Herodotou et al. 1999). The 
transformation formula from RGB color to HSV color is shown in Equation 3.1 
(Herodotou et al. 1999), where the value of H would be in the range [0, 360], 
and the values of S and V would be in [0, 1].
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In order to treat the three components in the same way for the calculation 
of the color feature, the H needs to be transformed in the range [0, 1]. For 
the hue component, the visible spectrum distributes over the whole range 
[0, 360]; that is, including 0 but excluding 360. For instance, red, green, and 
blue colors are separated by 120° within this range. In this way, H does not 
assume the mathematical meaning of an angle (i.e., 90° and 270° represent 
different colors). Thus, it is reasonable to normalize H to [0, 1], which includes 
0 but excludes 1, with a linear transformation. After the transformation, the 
color feature of the pixel can be expressed as

	 CF = ω1 · H + ω2 · S + ω3 · V	 (3.2)

where ω1, ω2, and ω3 are the weights of the three components, and ω1 + ω2 + 
ω3 = 1. Therefore, the color feature CF here will be a single value instead of a 
vector of the three components. There are two advantages of this. First, it is 
convenient to place different weights with different components. According 
to psychological research, hue is related mostly to the color we determine 
(see) an object to be. Thus, it is reasonable to place higher weight on the H 
component; that is, ω1. However, which combination of the three weights is 
the best probably depends on various applications. The second advantage 
is that it is computationally better than representing the color feature as a 
vector. Since the color feature is used to calculate the heterogeneity for a 
large number of times in the following steps, the representation of the color 
feature in this way will save a lot of time.

  



49Methodology of Combining Optical and SAR Data

3.5.3.2.2.2  Determine SAN  The SAN of a pixel is determined within a view 
port (Figure 3.2) centered on the central pixel using a given heterogeneity 
threshold. The heterogeneity between two pixels is defined to determine the 
SAN of one pixel using its color feature. Let CF0 be the color feature of the 
central pixel and CFi represent the color feature of the pixel i, which is to be 
determined whether inside the SAN or not. Thus, a simple way of express-
ing the heterogeneity between the two pixels is diff = |CF0 − CFi|. Given a 
threshold T and that the SAN of the central pixel is SAN0, the rule could be 
i ∈ SAN0 iff diff < T, where iff represents the term “if and only if.”

The threshold of heterogeneity between two pixels is a key factor influ-
encing the size of the SAN. If the threshold is too small, most of the SANs 
contain only a few pixels, which can result in difficulties for the feature 
extraction from the SANs. Thus, an appropriate threshold is crucial for the 
feature extraction procedure in the steps to follow. In a simple way, the opti-
mal threshold is found with a threshold search procedure by quantitatively 
testing various thresholds and analyzing the size of the SANs. In this study, 
a series of numbers is tested for threshold values and corresponding sizes 
of SANs are counted. Results are plotted in a curve using a spline interpola-
tion method. Finally, the threshold curve is used to determine the optimal 
threshold.

3.5.3.2.3 � Extracting Spatial Features

3.5.3.2.3.1  Texture Extraction Method  There is no accepted quantitative 
definition of texture (Bharati et al. 2004). Rather, it is left as an intuitively 
obvious but quantitatively undefined characteristic associated with a given 
pixel. Various attempts have been made to give it an appropriate quantita-
tive definition, but none appear to have achieved widespread acceptance. In 
this study, a texture analysis is conducted on each SAN to represent the tex-
ture characteristic of each pixel. Texture features can be extracted with the 
SAN. There are many methods cited in the previous literature for carrying 
out texture analysis, such as co-occurrence-matrix-based approaches (Zhang 
2001), random distribution models (Bruzzone and Prieto 2002), and geosta-
tistical methods (Curran 1988). Since each SAN has an uncertain shape, and 
considering the case of remote sensing images, the geostatistical approach 
was used to describe the spatial autocorrelation, which is closely related to 
the texture characteristics (Jensen 2007). The geostatistical approach was 
reported to successfully represent the autocorrelation of spatial data (e.g., 
remote sensing images) (Fabbri et al. 1993; Jensen 2007). In geostatistics, the 
variogram is calculated first and is fitted with a theoretical model such as 
the spherical model, and then the parameters of the variogram, such as nug-
get, sill value, and variable-range, are used to describe the characteristics of 
spatial autocorrelation.

However, the calculation of a variogram and the fitting of the theoreti-
cal variogram are time-consuming processes. Since we do not employ the 
variogram to predict some unknown pixels, but only to describe the texture 
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feature, there is no need to calculate all the function values of the variogram 
at every step length h. Only some of the key steps are helpful to describe the 
texture feature, such as when h = 1, the function value γ(h) will be the sill 
value of the variogram. Thus, a selected series of steps was used to compute 
the function values, which is a modified version of the variogram, shown as 
follows:

	 γ( )
( )

[ ( ) ( )]
( )

H
N H

Z x Z x Hi i

i

N H

= − +
=
∑1 2

1

	 (3.3)

where H = [h1, h2, …, hn] denotes the selected series of steps and γ(H) the resam
pled variogram, which is treated as the extracted feature of the texture. 
In specific applications, h should be selected according to both the spatial 
resolution of the data and the landscape characteristics of the land surface. 
Generally, the higher the resolution of the data and the larger the size of 
the targets, the higher the value of h should be used. In this study case, H is 
empirically set to be [1, 2, 3].

3.5.3.2.3.2  Description of Geometric Features and Their Effectiveness  Geometric 
features include many types, such as shape features and topological fea-
tures. Since this study focuses on modeling the early processing of visual 
perception, only the shape features are considered. Shape features of images 
have received attention since 1993, when Fabbri first introduced the shape 
feature into multispectral remote sensing images (Fabbri et al. 1993; Jensen 
2007). Description of shape characteristics in the traditional shape analysis 
methods contained the compact expression (compactness), the complexity 
description, and the curvature description. In this study, two kinds of com-
pact expressions are employed as the shape descriptors: the aspect ratio (R) 
and the form factor (F), illustrated by Equation 3.4, where L and W are the 
length and width of the minimum boundary rectangle (MBR) of the SAN, 
B is the perimeter of the SAN, and A is the area of the SAN.
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Another issue of the shape feature extraction is the effectiveness of the 
shape description. The shape characteristics may be meaningless for some 
terrain objects with random shapes, such as natural forests, residential areas, 
and farmland, but they are important for roads, buildings, sports fields, and 
other targets with a regular shape. Therefore, the effectiveness of the shape 
feature is very important. The effectiveness of the shape can be defined as

	 eff = [Re, Fe]	 (3.5)
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where Re ∈ {0, 1} is the effectiveness of aspect ratio, Fe ∈ {0, 1} is the effective-
ness of the form factor, and if the shape feature is meaningful for classifica-
tion, it is assigned to be 1; otherwise, it will be 0. The assignment of shape 
effectiveness can be done with a supervised classification procedure, which 
can be conducted via four steps: (1) visually select a set of samples contain-
ing pixels with both effective and ineffective shape features, (2) generate the 
SANs of these samples and calculate their shape features, (3) use these sam-
ples to train a classifier (e.g., minimum distance classifier or maximal likeli-
hood classifier) to classify the shape features (the output of the classification 
is 0 or 1), and (4) apply the classifier to assign the effectiveness of the shape 
features for other SANs.

Finally, the shape features of a SAN can be expressed as the Equation 3.6 
in vector form. However, some managed forests and balanced residential 
areas may also have regular shapes. In this case, the determination of shape 
effectiveness should be more complicated than that presented above. For 
instance, texture features should be taken into account to help define the 
shape effectiveness. In this book, we only consider natural forest and ordi-
nary residential areas.

	 SHA = [R, F, Re, Fe]	 (3.6)

3.5.3.2.3.3  Integration of All the Features  The feature of a SAN contains the 
color feature, the texture feature, and the shape feature. The values of all 
these features are normalized into the same range [0, 1]. Finally, all features 
should be integrated to express the general feature of each SAN. This feature 
integration procedure is a data fusion procedure on the feature level, which 
can be illustrated by the following general model.

	 SANF = fusion(CF(k), TF(m), SF(n))	 (3.7)

where CF(k) is the color feature, TF(m) is the texture feature, and SF(n) is the 
shape feature. Each feature is multidimensional and can be represented 
as a vector, and the variants k, m, n are the number of vector elements for 
color, texture, and shape features, respectively. The function fusion() is 
the fusion method used to integrate all the features. In Equation 3.7, the 
function fusion() is only a concept model. Many existing approaches can 
be used to conduct this operation, such as principal component analysis 
(PCA), Fourier transform, and wavelet transform, or simply link all three 
vectors of features into a larger vector if there are only a small number of 
features. In the experiment conducted in this study, there is one color fea-
ture (Equation 3.2), three texture features (Equation 3.3 where H = [1, 2, 3]), 
and four shape features (Equation 3.6). Thus, only the simple vector-based 
approach is used as there are only a total of eight features (= 1 + 3 + 4) in 
the study case.
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3.5.4 � Fusing the Optical and SAR Data

A flowchart of fusing the optical and SAR images is shown in Figure 3.12, 
illustrating the details of the combination of optical and SAR images to 
classify impervious surfaces. Several issues are important for the fusion of 
optical and SAR data, including the coregistration of the two data sources, 

Feature-level fusion

Pixel-level fusion

Optical
remote sensing

SAR
remote sensing

Feature extraction Feature extraction

ISE ISE

Final ISE

Preprocessing Preprocessing

GCP based multisource data coregistration (RMSE < 1 pixel)

Spectral features Spatial features

NDVI NDWI Texture Shape

GLCM approach SAN approach

ANN

SVM

RF

Decision rules

Decision-level fusion

FIGURE 3.12
Optical-SAR fusion for ISE.
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the feature extraction methods, the comparison between a single use of 
optical or SAR data, the comparison of the differences of various levels 
of fusion strategies, and the fusion methods for combining the two data 
sources. Since the feature extraction methods have already been described 
in Section 3.5.3, this section will focus on the methods of image coregistra-
tion, the comparison of the single use of the two data sources, the compari-
son of different levels of fusion, and the fusion methods between optical 
and SAR images.

3.5.5 � Result Validation and Accuracy Assessment

For supervised classifiers (e.g., MLP, SVM, and RF), both the size and qual-
ity of the training data are highly significant in determining the perfor-
mance of classification, while testing data is imperative in assessing the 
accuracy of both supervised and unsupervised classifications. In order 
to quantitatively assess the accuracy of the ISE, an appropriate sampling 
framework should be used. Five main types of sampling schemas were 
summarized previously by Jensen (2007): the simple random schema, the 
system schema, the layer schema, the layer system schema, and the clus-
ter schema, where different backgrounds represent different classes in 
the layer schema. Different schemas are suitable for different cases and 
require different amounts of work. Among these schemas, the cluster 
schema is the most convenient to conduct, with much less labor than the 
other schemas. In this study, the cluster schema was applied to the study 
area by sampling the cluster test data over the satellite data with the aid 
of visual interpretation of the satellite data, digital orthophoto data, and 
in situ data. Moreover, very-high-resolution data from Google Earth is also 
used to help visually interpret the satellite data for the result validation 
in this study.

3.6 � Conclusion

This chapter presented the methodology used in this book. A general frame-
work of methodology was first introduced to explain the logical relationship 
of land cover diversity, remote sensing responses, and ISE. Second, the per-
pixel modeling of ISE was presented as a basic strategy to estimate impervi-
ous surfaces in this research, followed by an introduction of the approaches 
to investigate the seasonal effects of ISE in tropical and subtropical regions. 
Third, the feature extraction methods were presented in detail. Following 
an introduction to the conventional feature extraction approach based on 
GLCM, a novel approach based on the SAN was presented with technical 
details. Fourth, a methodological framework of fusing the optical and SAR 
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data was presented with methods of image coregistration, investigation of 
the advantages and disadvantages of optical and SAR data, comparison of 
different fusion levels, and the fusion procedure with supervised classifiers. 
Finally, the sampling methods for training and testing datasets and the accu-
racy assessment approach were presented.
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4
Impact of Climate Zone on Impervious 
Surface Estimation and Mapping

4.1 � Introduction

A climate zone can have significant impacts on impervious surface esti-
mation using satellite images in tropical and subtropical areas. There are 
several major climate categories in the regions of concern, including tropi-
cal moist climate, wet-dry tropical climate, humid subtropical climate, and 
Mediterranean climate, in which the Mediterranean climate zone is located 
on the boundary between subtropical and temperate regions. Different cli-
mate zones have different seasonal patterns of temperature, precipitation, 
humidity, plants, and so forth. A climate zone can influence impervious sur-
face estimation in different ways directly or indirectly. This influence is also 
known as the seasonal effects when using optical remote sensing images 
to map impervious surfaces. These seasonal effects include three aspects: 
(1) the difference in precipitation in dry seasons and wet seasons can pro-
duce a difference of water surface area on the land surface, (2) the seasonal 
changes of soil moisture in rainy and dry seasons can influence the spectral 
confusion between different land cover types, and (3) the seasonal changes 
of plants will change the vegetation coverage in the areas of hills, moun-
tains, and greening zones in urban areas. Water body and vegetation are two 
important land cover types in urban remote sensing studies, and the distri-
bution of these two land cover types lead to different patterns of spectral 
confusion in a given urban study area.

According to previous research, ISE from satellite images vary in different 
seasons due to the seasonal changes of vegetation. Impervious surfaces were 
reported to be overestimated in wintertime, when tree canopies are at their 
minimum (Weng et al. 2009). Moreover, different ISE methods are sensitive 
to this seasonal change in different ways. For instance, linear spectral mix-
ture analysis is more sensitive to seasons, while the regression tree model 
is less sensitive to this change (Wu and Yuan 2007). Nevertheless, both the 
work done by Wu and Yuan (2007) and Weng et al. (2009) was conducted 
at the midlatitude region where the plant phenology undergoes dramatic 
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changes in different seasons. In contrast, tropical and subtropical areas 
have a significantly different situation compared with temperate regions in 
most previous study sites. Therefore, it is still not clear whether the seasonal 
effects observed in previous studies can be compared with those in tropical 
and subtropical areas.

This study aims to address this question and assess the seasonal effects 
of ISE in tropical and subtropical regions. In this study, four cities includ-
ing Guangzhou (China), Cape Town (South Africa), Mumbai (India), and Sao 
Paulo (Brazil), were selected for analyzing the seasonal effects of impervi-
ous surface estimation using Landsat TM/ETM+ images. Two widely used 
machine-learning methods, ANN and SVM, are applied to extract the imper-
vious surfaces. ANN and SVM have been frequently reported to obtain supe-
rior performance over other classifiers in remote sensing studies, and thus 
are employed in this study. The confusion matrix is employed to assess the 
accuracy of ISE and thus to quantitatively investigate the seasonal effects on 
ISE of the climate zone in tropical and subtropical urban areas.

4.2 � Datasets and Methodology

In tropical and subtropical areas, it is very difficult to choose an image with-
out any clouds even during dry seasons (Fan et al. 2008). The images selected 
for this study are accompanied by small areas of clouds that are difficult to 
remove by image processing algorithms because they are very small and 
thin (Hagolle et al. 2010). During the selection of Landsat images for differ-
ent seasons in the four study sites, it was difficult to find images without any 
contamination from clouds. Consequently, we tried to select the relatively 
best images for each season of each study site. We found that some images 
are free of clouds, while some are affected by a small amount of clouds and 
the maximum cloud coverage is 6% according to the United States Geological 
Survey (USGS) archive record. In order to investigate the seasonal effects 
of impervious surface estimation from satellite images, four scenes of 
Landsat TM/ETM+ images were chosen for four different seasons in this 
study. Table 4.1 shows that the seasonal satellite data is selected from differ-
ent cyclical seasons and different dry and wet seasons. Additionally, note 
that the climate characteristics are different in the four cities. In Guangzhou, 
Mumbai, and Sao Paulo, hot seasons are generally wet, and cool seasons are 
dry. In Cape Town, hot seasons are dry, and cool seasons are wet.

The specification of Landsat ETM+ images can be found in Chapter 3, 
Section 3.2.1 of this book. Moreover, Landsat calibration was also applied 
using published postlaunch gains and offsets (Chander et al. 2007, 2009). The 
calibration was conducted using the software calibration utilities module 
of ENVI 4.7. We assumed that the atmospheric conditions were clear and 
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homogeneous and the small area of clouds would not significantly impact 
the whole scene of the image, and thus no atmospheric correction was per-
formed (Wu and Murray 2003).

With careful examination of the four study cases, five land use types were 
defined to conduct the classification procedure according to the landscape of 
the study area. These land cover types include water, vegetation, bare soil, 
dark impervious surfaces, and bright impervious surfaces. ANN and SVM 
were then applied to classify the four seasonal data of ETM+ images. After 
seven land use classes were obtained, a combining operation was employed 
to reclassify the five land use types into two types: impervious surfaces and 
nonimpervious surfaces. During this stage, water body, vegetation cover, and 
bare soils were combined to form the nonimpervious surface class, while 
dark and bright impervious surfaces were combined to form the impervious 
surface class.

In order to obtain training and test samples, a visual interpretation pro-
cedure was used by visually comparing the four seasons of Landsat images 
and very-high-resolution images from Google Earth from the history data 
according to the Landsat images. However, terrains may appear differently 
in different seasons due to the seasonal changes of the plants, weather, and 
solar radiation, while the actual area and distribution of the impervious sur-
faces may be relatively stable, as all the images are selected in the same year. 
In this study, we assumed that the actual area and distribution of impervi-
ous surfaces stay the same during the year of the imagery dates. Therefore, 
different training sample sets are designed for different seasons of images, 
while only one testing dataset is sampled for all seasonal images. The sam-
ples included two main types: impervious surfaces and nonimpervious 
surfaces. First, to sample the training data for impervious surfaces, bright 
impervious surfaces and dark impervious surfaces were sampled separately. 

TABLE 4.1

Landsat Images for Four Study Sites

Imagery Date Season Imagery Date Season

Guangzhou Mumbai

2009-01-10 Winter Dry 2011-01-30 Winter Dry
2009-05-02 Spring Wet 2010-04-17 Spring Dry
2009-08-22 Summer Wet 2010-05-03 Summer Wet
2009-10-09 Autumn Dry 2010-10-26 Autumn Wet

Sao Paulo Cape Town

2010-02-05 Summer Wet 2011-01-03 Summer Dry
2010-04-18 Autumn Dry 2011-04-09 Autumn Wet
2010-08-24 Winter Dry 2011-06-02 Winter Wet
2010-11-28 Spring Wet 2011-10-02 Spring Dry
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Second, three types of land cover were sampled for nonimpervious surfaces: 
water body, vegetation, and bare soils. After the classification procedure, a 
postclassification is applied to combine all the land cover types into impervi-
ous surfaces and nonimpervious surfaces accordingly. For the testing data, 
both samples for the impervious surfaces and nonimpervious surfaces were 
obtained normally from each subtype of land cover. Lastly, the overall accu-
racy and Kappa coefficient based on the confusion matrix were employed to 
assess the accuracy of the impervious surface estimation (Jensen 2007).

Additionally, as one of the typical approaches, LSMA is also employed 
to compare with ANN and SVM. To apply LSMA, water surfaces in all the 
Landsat images of the four cities was first masked out with an unsupervised 
classification process (Wu and Murray 2003). Then, minimum noise fraction 
(MNF) transform was applied and the first three components were employed 
to analyze the feature space to select four endmembers (i.e., vegetation, bare 
soil, low albedo, and high albedo) from the images based on the VIS concep-
tual model (Ridd 1995). Next, using the SMA approach, four fraction images 
were calculated from each image. By adding the low albedo and high albedo 
fraction images, the fraction image of impervious surfaces could be obtained 
according to previous research (Wu and Murray 2003). However, in order to 
compare with the impervious surface results from ANN and SVM, the sub-
pixel estimation of impervious surfaces from LSMA was transformed into a 
per-pixel level by the following rule: pixels with a portion of impervious sur-
faces equal to or higher than 50% were treated as impervious surface pixels, 
while all others were treated as nonimpervious surface pixels. The per-pixel 
level of impervious surfaces derived from LSMA could then be assessed by 
the same test sample sets that were applied to the results from ANN and 
SVM for comparison.

4.3 � Results and Discussion

4.3.1 � Guangzhou

Figure 4.1 shows the estimate of impervious surfaces with ANN and Table 
4.2 shows the accuracy assessment result of the extracted impervious sur-
faces using the ANN method, which shows a clearer illustration of the pat-
terns. In contrast with the previously reported research in the midlatitude 
region (Weng et al. 2009; Wu and Yuan 2007), the winter imagery (January 
10) obtained the best accuracy, with an overall accuracy of 91.44% and a 
Kappa coefficient of 0.8287. In spring, the accuracy was also good (overall 
accuracy, 88.25%; Kappa coefficient, 0.7651). The lowest accuracy happened in 
the autumn period (October 9), with an overall accuracy of only 83.30% and 
a Kappa coefficient of 0.6615. Summertime (August 22), which was reported 
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to be the best season for ISE in temperate regions, only had 84.50% overall 
accuracy and a Kappa coefficient of 0.6873. Generally, dry seasons obtained 
much higher accuracy than wet seasons.

Figure 4.2 shows the results with SVM and Table 4.3 compares the accuracy 
assessment of ISE from the SVM approach. The highest accuracy occurred in 
the wintertime, when the overall accuracy was 92.0028% and the Kappa coef-
ficient was 0.8394. Both the spring and autumn generated low accuracy in 
this experiment, with the overall accuracy only about 83% and a Kappa coef-
ficient of about 0.66. The summer image produced a slightly higher accuracy 

(a) (b)

(c) (d)

FIGURE 4.1
Estimation of impervious surfaces in Guangzhou using ANN. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2009-01-10, (b) 2009-05-02, (c) 2009-
08-22, and (d) 2009-10-09.
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TABLE 4.2

Accuracy Assessment of the Classification Results 
by ANN

Image Date Season OA (%) Kappa

2009-01-10 Winter Dry 91.4367 0.8287
2009-05-02 Spring Wet 88.2519 0.7651
2009-08-22 Summer Wet 84.5011 0.6873
2009-10-09 Autumn Wet 83.2979 0.6615

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.

(a) (b)

(c) (d)

FIGURE 4.2
Estimation of impervious surfaces in Guangzhou using SVM. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2009-01-10, (b) 2009-05-02, (c) 2009-
08-22, and (d) 2009-10-09.
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than those of the spring and autumn, but the accuracy is still much lower 
than that of the wintertime. The SVM results illustrate the same consistent 
relationship between climate zone and ISE accuracy as in the ANN results.

However, LSMA produced a rather different pattern of impervious surface 
results, as shown in Figure 4.3 and Table 4.4, where the results are better in wet 
seasons than in dry seasons. Moreover, the accuracy is generally lower than 
that from ANN and SVM in all four seasons. By interpreting the results shown 
in Figure 4.3, a noticeable underestimation in winter and summer, as well as 
a noticeable overestimation in spring and autumn, can be observed. Actually, 
this error mainly comes from the threshold set for transforming the impervi-
ous surface results from the subpixel level to the per-pixel level. This study 
used an empirical threshold of 50%, which remains an unaddressed issue. In 
order to assess the accuracy of impervious surfaces derived from LSMA at a 
per-pixel level, this important threshold needs to be further investigated.

4.3.2 � Mumbai

The ISE results and accuracy assessment using ANN in Mumbai are pre-
sented in Figure 4.4 and Table 4.5, and show that the best result comes from 
spring (April 17) with an overall accuracy of 91.18% and a Kappa value of 
0.8219. The spring result is slightly better than that in winter. Results in win-
ter (January 30) and spring (April 17) have a noticeably higher accuracy than 
that from summer (May 3) and autumn (October 26). Autumn results have 
the lowest accuracy because a number of impervious surface pixels were 
misclassified as nonimpervious surface pixels and there is an observable 
underestimation in Figure 4.4d. Note that misclassifications in rainy seasons 
(summer and autumn) happen more frequently, which can be observed in 
the figures. Nevertheless, there is an overall overestimation in all four season 
results. This is caused by the complex land covers pattern in Mumbai. In this 
study area, residential and commercial areas are very small and fragmented, 
while greening areas are also fragmentally located among these impervious 
surfaces. Therefore, there are numerous mixed pixels in the Landsat images 
at 30 m × 30 m resolution. With a per-pixel method, some mixed pixels are 
treated as impervious surface pixels. As a result, overestimation occurs even 

TABLE 4.3

Accuracy Assessment of the Classification Results by SVM

Image 
Date Season OA (%) Kappa

2009-01-10 Winter Dry 92.0028 0.8394
2009-05-02 Spring Wet 83.0149 0.6588
2009-08-22 Summer Wet 84.9965 0.7000
2009-10-09 Autumn Wet 83.2272 0.6592

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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(a) (b)

(c) (d)

FIGURE 4.3
Estimation of impervious surfaces in Guangzhou using LSMA. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2009-01-10, (b) 2009-05-02, (c) 2009-
08-22, and (d) 2009-10-09.

TABLE 4.4

Accuracy Assessment of the Classification Results by 
LSMA

Image 
Date Season OA (%) Kappa

2009-01-10 Winter Dry 61.57 0.2208
2009-05-02 Spring Wet 84.78 0.6906
2009-08-22 Summer Wet 61.01 0.2184
2009-10-09 Autumn Wet 78.98 0.5674

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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(a) (b)

(c) (d)

FIGURE 4.4
Estimation of impervious surfaces in Mumbai using ANN. Bright areas show impervious sur-
faces and dark areas show nonimpervious surfaces. (a) 2011-01-30, (b) 2010-04-17, (c) 2010-05-03, 
and (d) 2010-10-26.

TABLE 4.5

Accuracy Assessment of the Classification Results in 
Mumbai by ANN

Date Season OA (%) Kappa

2010-01-30 Winter Dry 90.78 0.8154
2010-04-17 Spring Dry 91.18 0.8219
2010-05-03 Summer Wet 88.59 0.7708
2010-10-26 Autumn Wet 85.84 0.7114

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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in the dry seasons. However, the comparison between different seasons is 
reliable since this phenomenon exists in all the seasons and can be ignored 
during the comparison.

In the results from SVM, there are some slight differences, which are shown 
in Figure 4.5 and Table 4.6. The best result comes from the winter image, 
with an overall accuracy of 92.23% and a Kappa coefficient of 0.8450. The 
lowest result is from the autumn image, with an overall accuracy of 86.25% 
and a Kappa coefficient of 0.7201. Generally, dry seasons (winter and spring) 
are more suitable for the mapping of impervious surfaces than wet seasons 
(summer and autumn). However, the overestimation phenomenon still exists 

(a) (b)

(c) (d)

FIGURE 4.5
Estimation of impervious surfaces in Mumbai using SVM. Bright areas show impervious sur-
faces and dark areas show nonimpervious surfaces. (a) 2011-01-30, (b) 2010-04-17, (c) 2010-05-03, 
and (d) 2010-10-26.
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in all four seasons due to the mixed pixels. Considering all the results, both 
ANN and SVM get a generally consistent result for ISE. Winter is the most 
suitable season for ISE using the per-pixel classification approach, while 
summer and autumn are not appropriate for ISE due to high precipitation.

Comparatively, the results from LSMA are less accurate than those from 
ANN and SVM, as shown in Figure 4.6 and Table 4.7. Nevertheless, the over-
all pattern is generally consistent with other results that dry seasons had a 
higher accuracy than wet seasons. The highest accuracy came from the win-
ter image, with an overall accuracy of 86.33% and a Kappa value of 0.7237, 
while the lowest accuracy came from the summer image, with an overall 
accuracy of 55.50% and a Kappa value of only 0.1029. As shown in Figure 4.6, 
an overall underestimation can be observed from all four seasons, which 
indicates that the empirical threshold used to transform the LSMA results 
from the subpixel to per-pixel level was possibly too high and should be 
decreased.

4.3.3 � Sao Paulo

With the ANN method, the best ISE result in Sao Paulo was obtained from 
the winter image (August 24) with an overall accuracy of 94.14% and a Kappa 
value of 0.8829 (Table 4.8). Spring (February 5) had the lowest accuracy 
(overall accuracy: 87.21; Kappa: 0.7453) because more impervious surface 
pixels were misclassified as nonimpervious surfaces pixels. This can also 
be observed in Figure 4.7a, where there is an underestimation on the north-
west part of the study area. ISE results in Sao Paulo are generally higher 
than those in other cities. However, shadows from tall buildings in this 
area produced more misclassification, which can be observed in the upper-
middle part of the study area in Figure 4.7. The major spectral confusions 
are those between bare soil and both dark and bright impervious surfaces 
and between water surfaces and shadows from tall buildings. Results in dry 
seasons are generally better than that in wet seasons. However, the autumn 
(dry) accuracy is slightly lower than the spring (wet) accuracy as observed, 
which was derived from the underestimation of impervious surfaces in the 
autumn image.

TABLE 4.6

Accuracy Assessment of the Classification Results in 
Mumbai by SVM

Date Season OA (%) Kappa

2010-01-30 Winter Dry 92.23 0.8450
2010-04-17 Spring Dry 91.83 0.8358
2010-05-03 Summer Wet 87.14 0.7421
2010-10-26 Autumn Wet 86.25 0.7201

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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(a) (b)

(c) (d)

FIGURE 4.6
Estimation of impervious surfaces in Mumbai using LSMA. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2011-01-30, (b) 2010-04-17, (c) 2010-
05-03, and (d) 2010-10-26.

TABLE 4.7

Accuracy Assessment of the Classification Results in 
Mumbai by LSMA

Date Season OA (%) Kappa

2010-01-30 Winter Dry 86.33 0.7237
2010-04-17 Spring Dry 69.74 0.3836
2010-05-03 Summer Wet 55.50 0.1029
2010-10-26 Autumn Wet 73.38 0.4502

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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TABLE 4.8

Accuracy Assessment of the Classification Results in 
Sao Paulo by ANN

Date Season OA (%) Kappa

2010-02-05 Summer Wet 87.21 0.7453
2010-04-18 Autumn Dry 92.63 0.8529
2010-08-24 Winter Dry 94.14 0.8829
2010-11-28 Spring Wet 93.43 0.8688

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.

(a) (b)

(c) (d)

FIGURE 4.7
Estimation of impervious surfaces in Sao Paulo using ANN. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2010-02-05, (b) 2010-04-18, (c) 2010-
08-24, and (d) 2010-11-28.
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The results using SVM have a consistent pattern with those using ANN in 
Sao Paulo (Figure 4.8 and Table 4.9). The winter image had the highest accu-
racy, with an overall accuracy of 94.14 and a Kappa value of 0.8829, while the 
lowest result was again from spring, with an overall accuracy of 88.99% and 
a Kappa value of 0.7805. The results demonstrate that different methods did 
not have significant impact on the ISE using seasonal images, and the overall 
underestimation appears in the results from both ANN and SVM.

When using LSMA, an inverse pattern was observed as in the Sao Paulo 
case (Figure 4.9 and Table 4.10), where wet seasons (summer and spring) 
obtained higher accuracy than dry seasons (autumn and winter). The highest 

(a) (b)

(c) (d)

FIGURE 4.8
Estimation of impervious surfaces in Sao Paulo using SVM. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2010-02-05, (b) 2010-04-18, (c) 2010-
08-24, and (d) 2010-11-28.
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TABLE 4.9

Accuracy Assessment of the Classification Results in 
Sao Paulo by SVM

Date Season OA (%) Kappa

2010-02-05 Summer Wet 88.99 0.7805
2010-04-18 Autumn Dry 91.56 0.8315
2010-08-24 Winter Dry 94.14 0.8829
2010-11-28 Spring Wet 92.18 0.8440

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.

(a) (b)

(c) (d)

FIGURE 4.9
Estimation of impervious surfaces in Sao Paulo using LSMA. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2010-02-05, (b) 2010-04-18, (c) 2010-
08-24, and (d) 2010-11-28.
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accuracy came from the summer image, with an overall accuracy of 76.15% 
and a Kappa coefficient of 0.5234. The lowest accuracy was derived from the 
autumn image, with an overall accuracy of 65.97% and a Kappa coefficient 
of 0.3206. Underestimation was also observed generally for all four seasons, 
indicating the high threshold value for the transformation of subpixel imper-
vious surfaces from LSMA.

4.3.4 � Cape Town

The seasonal effect of ISE in Cape Town is more complex due to the 
Mediterranean climate. In autumn and winter when the average tempera-
ture is low, the weather is wet, while spring and summer are dry seasons and 
the temperature is high. Therefore, the seasonal changes of plants are not 
consistent with those in other tropical and subtropical areas. These climatol-
ogy and phenology characteristics may have impacts on ISE in this region. 
Similarly, impervious surfaces were estimated comparatively using two 
methods, ANN and SVM, to investigate the impacts on ISE. The ISE results 
of Cape Town using ANN are shown in Figure 4.10 and the related accu-
racy assessment is shown in Table 4.11. Generally, in summer and autumn, 
more nonimpervious surface pixels were misclassified as impervious sur-
face pixels and thus there was an overestimation in these two images and the 
accuracy is relatively lower. The lowest accuracy comes from summer, with 
an overall accuracy of 88.83% and a Kappa coefficient of 0.7746. Winter and 
spring obtained generally a higher accuracy by reducing the misclassifica-
tion of nonimpervious surface pixels, and the best result was from the spring 
image, with an overall accuracy of 93.24% and a Kappa coefficient of 0.8634.

The ISE results in Cape Town using SVM are shown in Figure 4.11 and 
the accuracy assessment is shown in Table 4.12. The results are generally 
consistent with the results from ANN with only a slight difference in the 
winter and spring results. Overall overestimation was also observed in sum-
mer and autumn produced by the incorrect classification of nonimpervi-
ous surface pixels as impervious surface pixels. The lowest accuracy was 
obtained from the summer image, with an overall accuracy of 88.92% and 
a Kappa coefficient of 0.7758. Winter and spring also had generally better 

TABLE 4.10

Accuracy Assessment of the Classification Results in 
Sao Paulo by LSMA

Date Season OA (%) Kappa

2010-02-05 Summer Wet 76.15 0.5234
2010-04-18 Autumn Dry 65.97 0.3206
2010-08-24 Winter Dry 73.32 0.4671
2010-11-28 Spring Wet 75.67 0.5138

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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TABLE 4.11

Accuracy Assessment of the Classification Results in 
Cape Town by ANN

Date Season OA (%) Kappa

2010-01-03 Summer Dry 88.83 0.7746
2010-04-09 Autumn Wet 89.58 0.7906
2010-06-02 Winter Wet 92.11 0.8405
2010-10-02 Spring Dry 93.24 0.8634

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.

(a) (b)

(c) (d)

FIGURE 4.10
Estimation of impervious surfaces in Cape Town using ANN. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2011-01-03, (b) 2011-04-09, (c) 2011-
06-02, and (d) 2011-10-02.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18836-5&iName=master.img-036.jpg&w=163&h=163
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18836-5&iName=master.img-037.jpg&w=163&h=163
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18836-5&iName=master.img-038.jpg&w=163&h=163
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18836-5&iName=master.img-039.jpg&w=163&h=163


72 Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

(a) (b)

(c) (d)

FIGURE 4.11
Estimation of impervious surfaces in Cape Town using SVM. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2011-01-03, (b) 2011-04-09, (c) 2011-
06-02, and (d) 2011-10-02.

TABLE 4.12

Accuracy Assessment of the Classification Results in 
Cape Town by ANN

Date Season OA (%) Kappa

2010-01-03 Summer Dry 88.92 0.7758
2010-04-09 Autumn Wet 89.59 0.7902
2010-06-02 Winter Wet 92.68 0.8514
2010-10-02 Spring Dry 92.49 0.8482

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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results than summer and autumn, while the best result did not come from 
spring but from the winter season, with an overall accuracy of 92.68% and 
a Kappa coefficient of 0.8514. The results indicate that different estimation 
methods may have some influence on the ISE results, but this influence is not 
significant compared with the impacts of seasonal changes of climatology 
and phenology.

Nevertheless, the results derived from LSMA in Cape Town seem unreli-
able due to the rather low accuracy (Figure 4.12 and Table 4.13). The highest 
accuracy was from the spring image, with an overall accuracy of 55.87% and 
a Kappa value of 0.139, which are too low to be compared with the results 

(a) (b)

(c) (d)

FIGURE 4.12
Estimation of impervious surfaces in Cape Town using LSMA. Bright areas show impervious 
surfaces and dark areas show nonimpervious surfaces. (a) 2011-01-03, (b) 2011-04-09, (c) 2011-
06-02, and (d) 2011-10-02.
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from ANN and SVM. Therefore, there should be some critical error sources 
during the application of LSMA, such as the endmember selection and the 
threshold determination of transforming subpixel estimation to per-pixel 
estimation.

4.4 � Discussion

Plant phenology was considered to be the main cause of the seasonal 
changes of ISE, and ISE in leaf-on seasons are more accurate than those 
estimated in leaf-off seasons (Weng 2012; Weng et al. 2009; Wu and Yuan 
2007). As reported previously, in summer when plant leaves are on the trees, 
most areas of bare soils are overlaid by trees, grass, and crops. Hence, the 
confusion between bare soils and bright impervious surfaces is reduced 
greatly, and thus the estimated impervious surfaces are more accurate. 
However, the case in a tropical and subtropical region turns out to be much 
more complicated. First, seasonal plant changes occur much less frequently 
in tropical and subtropical areas, where most of the plants are evergreen 
throughout the whole year, so there is no boundary between the so-call 
leaf-on and leaf-off seasons. However, the plants may change in flowering 
seasons depending on the temperature and precipitation. Second, water 
bodies become seasonally changeable in rainy and dry seasons in tropi-
cal and subtropical areas but the specific characteristics of these seasonal 
changes may be also different in different climate zones due to the distri-
bution of wet seasons and dry seasons. In this study, taking Guangzhou as 
an example, we try to discuss the seasonal change characteristic of some 
typical land covers.

The city of Guangzhou has a humid subtropical climate. Due to the dra-
matic urbanization and irregular urban planning and management, there 
are many VSAs in this region. In wet seasons, rainwater fills many areas 
of different sizes that will be dry in dry seasons. These areas are the so-
called VSAs identified by a hydrological scientist (Frankenberger et al. 1999). 

TABLE 4.13

Accuracy Assessment of the Classification Results in 
Cape Town by LSMA

Date Season OA (%) Kappa

2010-01-03 Summer Dry 54.55 0.1115
2010-04-09 Autumn Wet 52.02 0.0138
2010-06-02 Winter Wet 51.36 0.013
2010-10-02 Spring Dry 55.87 0.139

Note:	 Kappa = Kappa coefficient; OA = overall accuracy.
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Moreover, the water level in lakes and rivers in dry seasons will be much 
lower than that in rainy seasons. Thus, theoretically, in dry seasons, more 
bare soils are exposed and are likely to be confused with bright impervi-
ous surfaces. Third, cloud coverage is another important factor. Even in 
dry seasons, small pieces of clouds appear from time to time. Thus, optical 
satellite images that are cloud-free are almost not available throughout the 
year. These clouds become targets that are confused with bright impervious 
surfaces.

In order to investigate the seasonal effects of impervious surfaces, about 
60 pixels of each typical land cover types are carefully selected and their 
average spectral characteristics are shown in Figure 4.13, depicting a typi-
cal situation of spectral reflectance in a subtropical monsoon urban city. It 
is impressive that there are two groups of spectral confusion. One group 
includes the clouds and bright impervious surfaces. Both of these two tar-
gets have high reflectance in the six bands. The other group has water bodies 
shade, and dark impervious surfaces. The patterns of these three targets are 
very similar, with low reflectance in the six spectral bands. This is quite an 
important factor to ISE, because water bodies increase in rainy seasons with 
more VSA. As a result, the confusion between water and dark impervious 
surfaces increases in rainy seasons. Another impressive finding is that the 
average reflectance characteristics of bare soils seem to be much lower than 
shown in previous reports (Weng et al. 2009; Wu and Yuan 2007). This is not 
surprising, since bare soils in a humid area are almost wet soil because of the 
humid climate. Therefore, it is much easier to discriminate the bare soil from 
either bright or dark impervious surfaces.
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Average digital numbers of different land use types in humid areas.
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To illustrate the characteristics of the seasonal changes of typical targets 
in the subtropical monsoon region discussed above, four locations in the 
study case of this chapter are selected, representing different types of ter-
rain. Images of the four dates of the four blocks, together with the related 
estimated impervious surfaces using the ANN method, are correspondingly 
shown in Figure 4.14. First, the vegetation subfigure shows that the vege-
tated area keeps relatively stable in different seasons and vegetated areas 
have little impact on the estimated impervious surfaces. Second, the bare 
soil subfigure reveals that even though bare soils undergo some changes in 
different seasons, they can be easily recognized as nonimpervious surfaces; 
however, water bodies are mistakenly classified as dark impervious sur-
faces. Third, the VSA subfigure demonstrates a similar case in the bare soil 
subfigure, where the water in VSA in May and August is wrongly treated as 
dark impervious surfaces. Fourth, the cloud and shadow subfigure demon-
strates the confusion between clouds and bright impervious surfaces and the 
confusion between shade and dark impervious surfaces. Clouds and related 
shade in August are misclassified as impervious surfaces.

Generally, in dry seasons, VSAs are empty of water and clouds are much less 
present, and therefore, less water is confused with dark impervious surfaces 
and fewer clouds are confused with bright impervious surfaces. Nevertheless, 
in rainy seasons, all VSA regions are filled with water, and many more clouds 
occur, resulting in a number of cloud shades. In this study in particular, the 
autumn image was taken at the beginning of the dry season (October 9) when 
most water in VSA regions still remains, and therefore it was treated as the 
wet/rainy season. Thus, the spectral confusion between water/shades and 
dark impervious surfaces, and between clouds and bright impervious sur-
faces, increase greatly. As a result, the dry season is more appropriate for the 
estimation of impervious surfaces in subtropical monsoon areas.
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FIGURE 4.14
Effects of seasonal changes of typical targets, VEG = vegetation, SOI = bare soil, VSA = variable 
source area, CLD = clouds and shade, ISE = impervious surface estimation.
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4.5 � Conclusion

Accurate ISE remains challenging due to the diversity of impervious sur-
faces, spectral confusion among various land covers, and the seasonal 
changes of vegetation and climate. Among the challenges, seasonal effects 
from the climate zones is one of the key issues that influence the accurate 
estimation of impervious surfaces. In this study, four scenes of Landsat TM/
ETM+ images were carefully chosen for four different seasons in four typical 
cities—Guangzhou, Mumbai, Sao Paulo, and Cape Town—from tropical and 
subtropical areas, and two classification methods, the ANN and the SVM, 
were employed to extract the impervious surfaces from the images at the 
pixel level. The commonly used LSMA was also employed to estimate imper-
vious surfaces at a subpixel level with an additional transformation to per-
pixel level estimation. The experimental results demonstrate quite a unique 
view of seasonal effects in tropical and subtropical areas that is different 
from that in midlatitude or temperate areas according to previous research 
(Weng et al. 2009; Wu and Yuan 2007). According to the results, in tropical 
and subtropical regions, winter and spring are generally the better seasons to 
estimate impervious surfaces from optical remote sensing images compared 
with summer and autumn. Winter and spring are generally the dry seasons 
in tropical and subtropical regions and the temperature is relatively lower. 
With a specific investigation in Guangzhou, we found that in winter there is 
a small amount of cloud and most of the VSAs are not filled with water. Even 
though more bare soils in the VSA are exposed, they can be easily identified 
because most are actually not dry soils as in the midlatitude areas. Therefore, 
satellite images are the most appropriate for estimating impervious surfaces. 
On the other hand, autumn images had the lowest accuracy of impervious 
surfaces due to the cloud coverage and water in VSAs. Autumn is a rainy 
season in a subtropical monsoon region, in which clouds occur very often 
and VSAs are always filled with water. Consequently, clouds are confused 
with bright impervious surfaces due to their similar high reflectance, and 
more water in VSAs is confused with dark impervious surfaces due to their 
similar low reflectance.

Moreover, the seasonal sensitivity of the two methods is compared. Both 
ANN and SVM methods show a general consistency in accurately depicting 
seasonal changes. However, both methods indicated that wintertime is the 
best season for ISE with satellite images in subtropical monsoon regions. 
The limitations of this study come from the methodology, which is generally 
based on a per-pixel level. In urban and suburban areas, one pixel with a size 
of 30 m × 30 m does not necessarily include only impervious materials or 
nonimpervious materials (Weng 2012; Wu and Murray 2003). In this case, the 
use of per-pixel methods would obtain a result with lower accuracy.
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5
Assessing the Urban Land Cover Complexity

5.1 � Introduction

Urban land use/land cover (LULC) classification is important for monitoring 
urbanization and its impacts on the environment (Lu and Weng 2006). However, 
the accuracy needs to be improved and it is still a challenge due to the diversity 
of LULC types (Lu et al. 2010; Lu and Weng 2006). Various satellite data has been 
applied to classify LULC using coarse, medium, and high-resolution images 
(Myint et al. 2011). However, there are some open problems that need to be 
addressed in order to improve the classification accuracy (Lu et al. 2004; Lu and 
Weng 2006). First, bare soils or sands were reported to be often confused with 
bright impervious surfaces (e.g., cool roofs and new concrete roads), while shade 
and water were often confused with dark impervious surfaces (e.g., asphalt and 
old concrete roads). These confusions are caused by the similar spectral reflec-
tance of different materials (Lu and Weng 2006). Second, clouds and their shad-
ows are considered a difficult issue to deal with in subtropical humid regions, 
where cloudy and rainy weather occurs throughout the entire year. Both these 
problems lower the accuracy of the LULC classification in subtropical humid 
urban areas. To deal with these problems, SAR remote sensing data is employed 
and combined with optical images to provide complementary information to 
help differentiate similar spectral reflectance of different LULC types and help 
identify the LULC information in cloudy areas. However, before combining the 
optical and SAR remote sensing data, the spectral confusion between various 
land covers should be investigated to better understand the situation in tropical 
and subtropical urban areas. This chapter aims to investigate the urban land 
cover complexity using optical remote sensing data to determine the confusion 
between different land covers in four tropical and subtropical cities.

5.2 � Datasets and Methodology

Since the optical images will be combined with the SAR images to estimate 
impervious surfaces in the following chapters, the selection of optical images 
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for this chapter was conducted according to the availability of SAR images 
in the corresponding study area. Similar to the study in Chapter 4, five land 
use types were defined to conduct the classification procedure according to 
the landscape of the study area. These land cover types include water (WAT), 
vegetation (VEG), bare soil (SOI), dark impervious surfaces (DIS), and bright 
impervious surfaces (BIS). Moreover, in order to analyze the impacts of clas-
sification methods to better understand the real spectral confusions in tropi-
cal and subtropical areas, two popular machine-learning methods, ANN 
and SVM, were employed to conduct the LULC classification. The training 
and test samples were the same sets used in Chapter 4. The confusion matrix 
was used as the main tool to investigate the spectral confusion between vari-
ous land cover types. Additionally, we assume that the collected training 
and test samples had some unavoidable errors, and in order to eliminate the 
influence of these errors, the analysis and discussion will focus on the mis-
classifications of more than 10 pixels between two land cover classes.

5.3 � Results and Discussion

5.3.1 � Guangzhou

In the Guangzhou study area, the LULC classification results using ANN 
and SVM are given in Figure 5.1, showing a generally consistent result of 
urban land covers. The noticeable difference between the two results is the 

(a) (b)

WAT VEG SOI DIS BIS

FIGURE 5.1
LULC classification in Guangzhou: (a) ANN and (b) SVM.
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total number of bare soil pixels and their distribution. It can be observed that 
more bare soil pixels over the whole area were classified using ANN. These 
bare soil pixels were classified as vegetation and dark impervious surface 
pixels in the SVM result. Moreover, most of these inconsistent pixels were 
located on or near the boundaries between different land covers. In general, 
SVM produced a better LULC classification result with less impact by the 
spectral confusion between various land covers.

In order to investigate the specific confusion between various land covers, 
the confusion matrix using the testing samples were calculated for both the 
ANN and SVM methods (Tables 5.1 and 5.2). From the confusion matrix of 
the ANN result, three major pairs of land covers were identified as being 
more easily confused. First, vegetation and bare soil tended to be confused 
with each other, with 28 pixels of vegetation misclassified as bare soil pixels 
and 12 pixels of bare soil misclassified as vegetation pixels. Second, bare soil 
seemed more easily confused with dark impervious surfaces, with 28 soil 
pixels misclassified as dark impervious surface pixels and 14 dark impervi-
ous surface pixels misclassified as bare soil pixels. Third, bright impervious 
surface pixels were also confused with bare soil, with 26 pixels of bright 
impervious surface misclassified as bare soil pixels. Generally, the overall 

TABLE 5.1

Confusion Matrix of ISE in Guangzhou 
Using ANN

WAT VEG SOI DIS BIS

WAT 102 5 0 0 0
VEG 0 90 12 1 3
SOI 0 28 122 14 26
DIS 0 1 28 153 2
BIS 0 0 0 0 138

Note:	 Overall accuracy: 83.45%, Kappa coeffi-
cient: 0.7911. WAT, water; VEG, vegeta-
tion; SOI, bare soil; DIS, dark impervious 
surfaces; BIS, bright impervious surfaces.

TABLE 5.2

Confusion Matrix of ISE in Guangzhou 
Using SVM

WAT VEG SOI DIS BIS

WAT 102 3 0 0 0
VEG 0 98 1 0 3
SOI 0 17 125 11 27
DIS 0 6 36 157 2
BIS 0 0 0 0 137

Note:	 Overall accuracy: 85.38%, Kappa coeffi-
cient: 0.8153.
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accuracy of the ANN classification was 83.45% and the Kappa coefficient 
was 0.7911. The most accurately classified land cover was water surface. 
When using the SVM approach, these spectral confusions were significantly 
reduced (Table 5.2). For instance, only 17 pixels of vegetation were misclas-
sified as bare soil pixels and very few bare soil pixels were misclassified 
as vegetation. In addition, only 11 pixels of dark impervious surface were 
misclassified as bare soil pixels. However, there was a slight increase of the 
number of misclassified pixels from bare soil to dark impervious surface 
and from bright impervious surface to base soil. Generally, the accuracy of 
SVM classification was higher than that of the ANN result, with an overall 
accuracy of 85.38% and a Kappa coefficient of 0.8153.

5.3.2 � Mumbai

Two methods, ANN and SVM, were used to conduct the LULC classification, 
with the classification results shown in Figure 5.2. It can be observed that 
many more bare soil pixels were identified by the SVM, which was incorrect 
due the spectral confusion between bare soil and vegetation and between 
bare soil and impervious surfaces. Comparatively, ANN obtained a better 
result with noticeably reduced misclassifications of soil pixels.

The confusion matrix was calculated with the test samples, which is shown 
in Table 5.3. From the confusion matrix, several spectral confusions can be 
noticed. In the ANN result, vegetation tended to be misclassified as water 
surfaces (13 pixels) and dark impervious surfaces (32 pixels). Bare soil was 
easily misclassified as water surfaces (34 pixels), dark impervious surfaces 

(a) (b)

WAT VEG SOI DIS BIS

FIGURE 5.2
LULC classification in Mumbai: (a) ANN and (b) SVM.

  



83Assessing the Urban Land Cover Complexity

(18 pixels), and bright impervious surfaces (20 pixels). Moreover, dark imper-
vious surfaces and bright impervious surfaces were also confused with each 
other. Note that there was great confusion between dark and bright imper-
vious surfaces, with 116 confused pixels of bright impervious surfaces mis-
classified as dark impervious surfaces. The overall accuracy was 74.37% and 
the Kappa coefficient was 0.6713. Meanwhile, in the SVM results (Table 5.4), 
vegetation was easily confused with bare soil (33 pixels) and dark impervi-
ous surfaces (28 pixels). Bare soil was also misclassified as dark impervious 
surfaces (47 pixels) or bright impervious surfaces (15 pixels). As well, there 
were incorrect classifications between dark and bright impervious surfaces: 
117 pixels of bright impervious surfaces were misclassified as dark impervi-
ous surfaces. The overall accuracy was 74.21% and the Kappa coefficient was 
0.6698. Generally, water surfaces were easy to identify in Mumbai, with less 
spectral confusion with other land cover types. Spectral confusion between 
impervious surfaces and nonimpervious surfaces was mainly due to veg-
etation and bare soil. Although there were a number of misclassified pixels 
between dark and bright impervious surfaces, they are subtypes of impervi-
ous surfaces, which had little impact on the mapping of impervious surfaces.

TABLE 5.3

Confusion Matrix of ISE in Mumbai 
Using ANN

WAT VEG SOI DIS BIS

WAT 214 13 34 0 0
VEG 0 226 2 34 16
SOI 0 9 92 15 6
DIS 0 32 18 289 116
BIS 0 1 20 1 99

Note:	 Overall accuracy: 74.37%, Kappa coef-
ficient: 0.6713.

TABLE 5.4

Confusion Matrix of ISE in Mumbai 
Using SVM

WAT VEG SOI DIS BIS

WAT 211 0 4 0 0
VEG 3 219 0 16 3
SOI 0 33 100 31 19
DIS 0 28 47 290 117
BIS 0 1 15 2 98

Note:	 Overall accuracy: 74.21%, Kappa coef-
ficient: 0.6698.
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5.3.3 � Sao Paulo

In this study case, land covers in Sao Paulo were less confused with each 
other. The noticeable confusions were between dark impervious surfaces 
and vegetation and bare soil, which influenced the LULC classification using 
both ANN and SVM. The results in Figure 5.3 demonstrate that a number 
of dark impervious surface pixels were misclassified as bare soil pixels, and 
thus produced an overall underestimation in the impervious surface results 
(Figure 5.3a). In contrast, SVM produced a more accurate LULC classification 
result, with much less misclassification of the bare soil. In fact, there were 
only a small number of bare soil pixels for such a highly developed urban 
area in this selected site, which is shown in the confusion matrix in Tables 
5.5 and 5.6. Nevertheless, due to the spectral confusion between bare soil and 

(a) (b)

WAT VEG SOI DIS BIS

FIGURE 5.3
LULC classification in Sao Paulo: (a) ANN and (b) SVM.

TABLE 5.5

Confusion Matrix of ISE in Sao Paulo 
Using ANN

WAT VEG SOI DIS BIS

WAT 215 4 0 3 0
VEG 0 311 7 47 13
SOI 0 0 0 68 0
DIS 0 6 6 243 4
BIS 0 0 1 4 194

Note:	 Overall accuracy: 85.52%, Kappa coef-
ficient: 0.8091.
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dark impervious surfaces, a number of pixels were incorrectly identified as 
bare soil pixels.

From the confusion matrix of the ANN result, dark impervious surfaces 
were misclassified as vegetation (47 pixels) and bare soil (68 pixels), while 
bright impervious surfaces were misclassified as vegetation (13 pixels). 
Nevertheless, one important spectral confusion should attract more atten-
tion: there were few areas of bare soil, and thus only 14 pixels were selected 
as test samples during the visual interpretation. However, all these bare soil 
pixels were misclassified as vegetation and dark impervious surfaces, which 
indicates that the spectral signature of bare soil is very closed and can be 
confused with the spectral signature of vegetation and dark impervious sur-
faces. The overall accuracy of the ANN result was 85.52% and the Kappa coef-
ficient was 0.8091. In the SVM classification, dark impervious surfaces were 
also misclassified as vegetation (51 pixels) and bare soil (35 pixels). Bright 
impervious surfaces were misclassified as vegetation (18 pixels) and dark 
impervious surfaces (13 pixels). In addition, the confusion between bare soil 
and vegetation and dark impervious surface also had a significant negative 
impact. The overall accuracy was 87.21% and the Kappa coefficient was 0.8288.

5.3.4 � Cape Town

The LULC classification in Cape Town shows more complex spectral confu-
sion between various land cover types. Figure 5.4 illustrates the classification 
results using ANN and SVM. With a visual interpretation of the results, an 
overall overestimation of bare soil can be observed from the SVM result. 
However, unlike the results in Guangzhou, Mumbai, and Sao Paulo, the 
spectral confusion was much more complicated since it occurred between 
different pairs of land covers. For instance, a number of vegetation pixels 
and a number of impervious surface pixels were both wrongly classified as 
bare soil pixels in the SVM result. The best identification of land cover type 
were water surfaces, with a rather consistent classification result from both 
ANN and SVM.

TABLE 5.6

Confusion Matrix of ISE in Sao Paulo 
Using SVM

WAT VEG SOI DIS BIS

WAT 215 0 0 0 0
VEG 0 313 6 51 18
SOI 0 0 0 35 4
DIS 0 8 8 278 13
BIS 0 0 0 1 176

Note:	 Overall accuracy: 87.21%, Kappa coef-
ficient: 0.8288.
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In order to better investigate the spectral confusion between various land 
cover types, the confusion matrix was calculated using the testing samples. 
As shown in Tables 5.7 and 5.8, using the ANN approach, 24 pixels of water 
surfaces were misclassified as vegetation, while 11 pixels of vegetation were 
incorrectly classified as bare soil. Bare soil was misclassified as vegetation (33 
pixels) and dark impervious surfaces (21 pixels). Dark impervious surfaces 
were misclassified as bare soil (27 pixels) and bright impervious surfaces (26 
pixels). In addition, 11 pixels of bright impervious surfaces were classified as 
bare soil. This complicated spectral confusion was produced by the complex 
land covers in this study area. In Cape Town, there was dark vegetation from 
forest and bright vegetation from farmland and grassland. Dark vegetation 
was easily confused with water surfaces in some wetland. Bare soil in Cape 
Town is also diverse, including land under construction and seasonal bare 

(a) (b)

WAT VEG SOI DIS BIS

FIGURE 5.4
LULC classification in Cape Town: (a) ANN and (b) SVM.

TABLE 5.7

Confusion Matrix of ISE in Cape Town 
Using ANN

WAT VEG SOI DIS BIS

WAT 74 0 0 3 0
VEG 24 201 33 5 1
SOI 1 11 203 27 11
DIS 3 0 21 221 8
BIS 0 0 13 26 179

Note:	 Overall accuracy: 82.44%, Kappa coef-
ficient: 0.7756.
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soil that should be covered by grass in the wet season. This bare soil can be 
easily confused with dark impervious surfaces, which are mainly from heav-
ily residential areas. When using SVM, these situations can also be observed. 
There were 26 water pixels classified as vegetation and 49 vegetation pixels 
classified as bare soil. Bare soil was misclassified as vegetation (12 pixels) 
and dark impervious surfaces (23 pixels), while bright impervious surfaces 
were misclassified as bare soil (16 pixels) and dark impervious surfaces (37 
pixels).

5.4 � Conclusion

This chapter provided an assessment of the urban land cover complexity 
by analyzing the spectral confusion between various land cover classes in 
the LULC classification results using two popular methods, ANN and SVM. 
The Landsat images from Guangzhou, Mumbai, Sao Paulo, and Cape Town 
were selected according to the availability of corresponding SAR data. Five 
land cover types—water, vegetation, bare soil, dark impervious surfaces, 
and bright impervious surfaces—were classified from each of the Landsat 
images. Experimental results indicate some useful findings about the urban 
land cover complexity in tropical and subtropical areas. Firstly, ANN and 
SVM showed different behaviors in different study areas. In Guangzhou and 
Sao Paulo, the classification results are better from SVM than ANN, showing 
it is less influenced by the spectral confusion between bare soil and other 
land cover types. Meanwhile, in Mumbai and Cape Town, ANN was supe-
rior to SVM in eliminating the confusion between bare soil and other land 
cover types. Additionally, land cover confusion is very complex in tropical 
and subtropical urban areas compared with previous studies reported in 
the literature. Bare soil is the most likely land cover type to be confused 
with other land covers, including not only bright impervious surfaces, but 

TABLE 5.8

Confusion Matrix of ISE in Cape Town 
Using SVM

WAT VEG SOI DIS BIS

WAT 69 0 0 2 0
VEG 26 163 12 5 1
SOI 5 49 234 28 16
DIS 2 0 23 228 37
BIS 0 0 1 19 145

Note:	 Overall accuracy: 78.78%, Kappa coef-
ficient: 0.7261.
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also dark impervious surfaces and vegetation. Moreover, in Guangzhou, 
Mumbai, and Sao Paulo, the spectral confusion happens mainly in between 
one or two pairs of land cover classes, which is simpler than the case in Cape 
Town where the spectral confusion occurs between several pairs of land cov-
ers at the same time. Therefore, the spectral confusion in urban land covers 
is much more complicated in tropical and subtropical areas compared with 
the situations in temperate regions, which can have a fundamental impact 
on ISE in these regions. In the following chapters, SAR images will be syn-
ergized together with optical images to reduce the spectral confusion in the 
optical images.
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6
Comparative Studies with Different 
Image Data and Fusion Methods

6.1 � Comparison of ISE with Single Optical and SAR Data

This section aims to compare single optical data and single SAR data in 
terms of ISE to investigate the potential of SAR data in mapping impervious 
surfaces. Four sets of optical and SAR images in four different cities were 
employed in this section: Guangzhou, Mumbai, Sao Paulo, and Cape Town, 
which are located in tropical and subtropical regions. Landsat TM/ETM+ 
images and ENVISAT ASAR images in these cities were used as the optical 
and SAR images for the comparative experiment. Table 6.1 lists the optical 
and SAR images used in this section.

6.1.1 � Parameter Configurations of ANN and SVM for Optical Data

ANN and SVM were employed as the methods to extract impervious sur-
faces from both optical and SAR images. The working principles of ANN 
and SVM were given in Chapter 2. Successful application of ANN and SVM 
lies in the parameter configurations regarding the datasets. As discussed in 
Chapter 2, the BP algorithm is crucial to the ANN classifier, while the num-
ber of iterations is a key factor for the classification. Therefore, in this study, 
the iteration times were changed from 1 to 1200. For each time period, we 
kept other parameters unchanged. For the SVM, two very important param-
eters were identified previously: the penalty (C) parameter and the Gamma 
(G) parameter in the kernel function.

Taking Guangzhou as an example, the impacts of various parameters on 
the accuracy of ISE are shown in Figure 6.1. Due to the characteristics of the 
Landsat data for the Guangzhou site, we tested different values of Gamma, 
including 0.1, 1.0, and 10, and found that the classification accuracy changed 
only a little. As a result, the penalty (C) must be quantitatively analyzed. For 
the ANN classifier, the following characteristics can be observed (Figure 6.1): 
(1) the accuracy fluctuated from 0 to 400 times and reached the peak (over-
all accuracy: 91.03%, Kappa coefficient: 0.88) at 400 iteration times, (2) from 
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400 iterations, both the overall accuracy and the Kappa coefficient decreased 
as the iteration times increased, indicating an overfitting of the BP learning 
algorithm, and (3) the accuracy finally became stable after 800 times, and the 
overall accuracy was about 89.7%, with a Kappa coefficient of 0.86.

On the other hand, results from SVM show that (1) at the first stage, the 
accuracy increased as the penalty increased and reached the highest point 
(overall accuracy: 92.55%, Kappa coefficient: 0.9) when the penalty was 50, 
(2) when the penalty was between 50 and 100, the accuracy stayed at a rela-
tively stable level, and then decreased sharply to a lower level (overall accu-
racy: 88.66%, Kappa coefficient: 0.85), and (3) after the penalty reached 400, 
the accuracy reached another stable level as the penalty increased. In this 
way, the optimal parameters could be found for other study sites.

6.1.2 � Parameter Configurations of ANN and SVM for SAR Data

As in the above section, by using the Guangzhou images as an example, the 
parameter configurations were also applied to SAR data to select the optimal 
parameters. Compared with the case of Landsat data, patterns were totally 
different for ASAR images (Figure 6.2). First, for ANN, the accuracy fluctu-
ates frequently as the number of iterations increases. Before 200 iterations, the 
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FIGURE 6.1
Impacts of parameter configuration for Landsat imagery: (a) ANN classifier and (b) SVM clas-
sifier (Gamma = 0.1).

TABLE 6.1

Datasets of Four Cities for Comparing Optical and SAR Images

Study Site Optical Image SAR Image

Guangzhou Landsat ETM+ ENVISAT ASAR
Mumbai Landsat TM ENVISAT ASAR
Sao Paulo Landsat TM ENVISAT ASAR
Cape Town Landsat TM ENVISAT ASAR
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overall accuracy jumped from 74.75% to 85.66%, with an increase of Kappa 
coefficients from 0.62 to 0.78. The accuracy then underwent a stable decrease 
between 200 and 600 iterations, where the overall accuracy was 78.76% and 
the Kappa coefficient was 0.68. Next, the accuracy began to fluctuate as the 
iteration time increased. However, the highest accuracy within this period 
did not exceed that at 200 iterations. This trend can be illustrated by the 
ANN training RMS seen in Figure 6.3, where the RMS shows a relatively 
stable fluctuation when the iteration times were between 1000 and 4000.

Second, although there was a small fluctuation between the penalty of 1 
and 100, an overall decrease can be observed toward both the total precision 
and Kappa coefficient when the penalty parameter increased from 1 to 1200. 
Therefore, the best accuracy came when the penalty was 1, where the over-
all accuracy was 85.53% and the Kappa coefficient was 0.77. As the penalty 
increased from 100 to 600, the accuracy underwent a linearly stable decrease 
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FIGURE 6.2
Effects of parameter configuration for ASAR imagery: (a) ANN classifier and (b) SVM classifier 
(Gamma = 0.1).
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to the point of a total precision of 78.68 and a Kappa coefficient of 0.68. The 
accuracy then remained nearly unchanged as a higher penalty was assigned.

6.1.3 � Comparative Results of ISE

6.1.3.1 � Guangzhou

Using the optical images, impervious surfaces were classified with MLP and 
SVM. The classification results with MLP demonstrate some important char-
acteristics. First, an overall overestimation of bare soil in the study area can 
be observed, where some of the bright impervious surfaces in the central part 
of the area were incorrectly classified as bare soils. Second, shade, produced 
by clouds, hills, trees, and buildings, were mainly treated as water bodies 
and confused with dark impervious surfaces, especially in the northwest 
part in the study case. Third, cloud coverage was another factor decreasing 
the accuracy of classification. In contrast, results with SVM had some signifi-
cant differences. Figure 6.4a and b shows that bare soil in the study area was 
classified more correctly and thus less bright impervious surfaces were iden-
tified. Moreover, the influence of shade was also not very great since more 
impervious surfaces in the shade area were successfully identified. The same 
difficulties were encountered with SVM with regard to clouds.

Compared with the classification of ETM+ images, the classified results 
from the ASAR images (Figure 6.4c and d) show some very different charac-
teristics. First, only three classes could be obtained from the ASAR images: 
impervious surfaces, vegetation, and water bodies. Second, due to the inter-
action between microwaves and surface objects, some reflectance from the 
objects along the river banks and boats in the rivers appear in the ASAR 
images and thus produced some errors to the classifications. Third, ANN 
appears to be more suitable for the classification of ASAR images because 
there is much less noise and the edge effect is also much less. However, SVM 
encounters numerous noises (small areas that are wrongly recognized as 
water), and the edge effect is also obvious.

From the analysis of the classification accuracy about ETM+ and ASAR 
imagery using ANN and SVM, we can get a general idea of the comparison 
between these two different data sources for ISE. On the one hand, Landsat 
ETM+ images provide more information for ISE since there are multiple 
spectral bands. However, as an optical sensor, Landsat ETM+ tends to be 
impacted by clouds, and this situation becomes much more serious when the 
study areas are located in a humid area such as the PRD. On the other hand, 
ENVISAT ASAR images are able to provide more information in humid and 
work in all weather conditions. Nevertheless, ENVISAT ASAT cannot obtain 
many spectral bands, which leads to the overall low accuracy of ISE.

Additionally, methodology is another significant factor influencing ISE. In 
this study, two classifiers, ANN and SVM, are selected to compare their per-
formances of ISE. With the above experiment and analysis, the best parameter 
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configurations are chosen for the comparison of these two methods. Table 6.2 
compares the differences of classification accuracy of ANN and SVM classi-
fiers. It is impressive that using single ETM+ data alone gets a higher accuracy 
than using ASAR data alone. Moreover, SVM tends to be superior over ANN 
for the classification of Landsat ETM+ images, which is consistent with results 
reported in Sun et al. (2011). Nevertheless, SVM appears to be inferior to ANN 
when applied to ASAR images, which is quite an interesting result in the esti-
mation of impervious surfaces. The results are also significant and meaning-
ful for further research into the synergistic use of optical and SAR data to 
more accurately estimate impervious surface distribution.

(a) (b)

(c) (d)

FIGURE 6.4
ISE using optical and SAR images alone in Guangzhou. (a) Landsat TM using ANN (December 
31, 2010), (b) Landsat TM using SVM (December 31, 2010), (c) ENVISAT ASAR using ANN 
(December 23, 2010), and (d) ENVISAT ASAR using SVM (December 23, 2010).
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6.1.3.2 � Mumbai

Figure 6.5 demonstrates the impervious surfaces estimated from only 
an optical image and only a SAR image using ANN and SVM classifiers. 
Some features can be identified from the ISE results by comparison. First, 
the results from only optical images shown in Figure 6.5a and b illustrate 
that there are both advantages and disadvantages in using single optical 
images. On the one hand, land cover boundaries between urban areas and 
vegetation or water surfaces were well identified with the rich multispec-
tral images. On the other hand, a general overestimation can be observed 
over the whole study area due to the fragmentation of the urbanization 
process. For instance, some vegetated areas were misclassified as dark 
impervious surfaces, while some bare soil land was incorrectly identified 
as bright impervious surfaces. Additionally, by comparing the results from 
ANN and SVM, no significant difference can be observed from Figure 6.5a 
and b, indicating consistent results from ANN and SVM. Second, Figure 
6.5c and d present the ISE results derived from single SAR images, show-
ing a significantly different pattern from that of the optical images. The 
impervious surface distribution demonstrates an overall result that is 
not as good as the one from optical images. Due to the speckles in SAR 
images, boundaries between different land cover types are confused and 
mixed together. Impervious surfaces in central urban areas were generally 
underestimated. Some misclassification can be found in the water surfaces, 
which was caused by the high backscattering signals from the sea waves. 
However, there are some advantages that we can see from the results. For 
instance, vegetation and bare soil land were well classified and separated 
from other land covers because of their low backscatter coefficients in the 
SAR images. In comparing ANN and SVM, the results are consistent as in 
the optical image case.

Therefore, there are both advantages and disadvantages to optical and 
SAR images for ISE, even though the results from optical images are gener-
ally better. The critical observation from these comparative results is that 
the advantages and disadvantages are different in the results from optical 
images and from SAR images. This indicates that both of the datasets may 
be able to provide complementary information to each other for a better ISE 

TABLE 6.2

Impervious Surface Estimation in Guangzhou

Datasets

ANN SVM

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

Landsat ETM+ 91.03% 0.8813 92.55% 0.9006
ENVISAT ASAR 85.66% 0.7754 85.53% 0.7718
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compared to using single dataset. For instance, on the one hand, vegetation 
and bare soils cannot be well classified using only optical images, but they 
can be identified very well using optical images due to their low backscat-
tering characteristics. On the other hand, water surfaces cannot be classi-
fied correctly in SAR images because of the speckles from the water surface 
waves, while they are well classified in optical images because of their low 
reflectance in the multispectral bands.

Table 6.3 shows the accuracy assessment of the ISE results from optical 
and SAR images in Mumbai, which are consistent with the classified images 
in Figure 6.5. First, accuracy of the ISE result from the optical images was 

(a) (b)

(c) (d)

FIGURE 6.5
ISE using optical and SAR images alone in Mumbai. (a) Landsat TM using ANN (May 3, 2010), 
(b) Landsat TM using SVM (May 3, 2010), (c) ENVISAT ASAR using ANN (June 27, 2010), and 
(d) ENVISAT ASAR using SVM (June 27, 2010).
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generally higher than that from the SAR images. The overall accuracy from 
the Landsat TM images was over 87% and the Kappa coefficient was over 
0.74. However, using the SAR images alone, the overall accuracy was about 
73%~75% and the Kappa coefficient was about 0.46~0.50, showing that SAR 
data alone cannot provide as a good result as optical data alone. Second, the 
accuracy comparison of ANN and SVM shows that ANN obtained slightly 
better results than SVM in both cases using optical data and SAR data. One 
possible reason for this may be the LULC complexity, which was discussed 
in Section 5.3.2. The spectral confusion mainly occurred between vegeta-
tion and impervious surfaces, as well as between bare soil and impervious 
surfaces. In this case, ANN showed a better result with the statistical risk 
minimization approach than SVM. Nevertheless, the difference of accuracy 
between ANN and SVM was not large and thus classification methods are 
not the major issue in this study case.

6.1.3.3 � Sao Paulo

The impervious surfaces classified from single optical and SAR images 
are shown in Figure 6.6. Similarly, ANN and SVM were comparatively 
employed in the Sao Paulo case. Compared with the results in Guangzhou 
and Mumbai, the Sao Paulo case provides a relatively different view of the 
ISE results not only in using different datasets but also in using different 
classification methods. First, using single optical images, impervious sur-
faces were generally well classified over the whole study area without sig-
nificant overestimation. However, some misclassification can still be found 
in Figure 6.6a and b. For instance, nearly the whole airport in the eastern part 
of the area was classified as impervious surfaces while in reality there were 
mostly vegetated areas and bare soil areas at the airport. Spectral confusion 
between bare soil and impervious surfaces also affected the results in the 
western part of the study area. Moreover, ANN and SVM showed a different 
estimation of impervious surfaces in this case. SVM got a better result with 
less impact from the spectral confusion between vegetation and impervi-
ous surfaces and between bare soil and impervious surfaces, especially in 
the western part of the study area. Second, the ISE result from a single SAR 
image also provided some unique characteristics. Affected by the speckles 

TABLE 6.3

Accuracy Assessment of Impervious Surface Estimation in Mumbai

Datasets

ANN SVM

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

Landsat TM/ETM+ 88.59% 0.7708 87.14% 0.7421
ENVISAT ASAR 75.57% 0.4997 73.62% 0.4559
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in the SAR image, linear features such as roads and rivers could not be well 
classified, leading to the misclassification on the boundaries between dif-
ferent land covers. Moreover, SAR data in the Sao Paulo case did not show 
good ability in identifying vegetated areas. Even though most of the airport 
area could be well classified as nonimpervious surface, other vegetation in 
the residential regions located in the middle and western part could not be 
well classified. This result was actually caused by the tall buildings in these 
areas. Tall buildings, although located among high vegetated greening areas, 
can cause high a backscattering coefficient in the SAR images. Consequently, 
SAR images mistakenly recognized them as impervious surfaces even though 

(a) (b)

(c) (d)

FIGURE 6.6
ISE using optical and SAR images alone in Sao Paulo. (a) Landsat TM using ANN (February 5, 
2010), (b) Landsat TM using SVM (February 5, 2010), (c) ENVISAT ASAR using ANN (January 
5, 2010), and (d) ENVISAT ASAR using SVM (January 5, 2010).
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they are located among vegetated areas. Moreover, ANN and SVM again 
showed different behavior using only SAR images. ANN seemed to over-
estimate the impervious surfaces by incorrect classification of vegetation 
over the whole area. However, SVM was influenced by the speckles in SAR 
images and thus produced noisy impervious surfaces mapping in the result. 
Underestimation of impervious surfaces can also be observed in the central 
urban areas by the SVM classifier. Comparatively, the ISE experiment in Sao 
Paulo also indicates that there are both advantages and disadvantages of 
optical and SAR images for ISE. This also indicates that both of the datasets 
may be able to provide complementary information to each other for a bet-
ter ISE compared to using single dataset alone. Therefore, it is necessary 
and practical to fuse both the optical and SAR images at the same time to 
improve the accuracy of ISE.

Accuracy assessment of the ISE results from optical and SAR data in Sao 
Paulo is shown in Table 6.4, providing a similar result to those in Figure 6.6. 
The overall accuracy from the Landsat TM images was over 87% and the 
Kappa coefficient was over 0.74. However, using the SAR image alone, the 
overall accuracy was only about 73%, which was 14% lower than that using 
the optical image alone. The Kappa coefficient was about 0.46. This indicates 
that SAR data alone cannot provide the same good results as can optical data 
alone. In addition, an accuracy comparison of ANN and SVM shows that 
SVM obtained better results than ANN in both cases using optical data and 
SAR data. This result is different from that in Mumbai. When considering the 
LULC complexity in Sao Paulo outlined in Section 5.3.3, we find that spec-
tral confusion also happened between vegetation and impervious surfaces, 
and between bare soil and impervious surfaces. As indicated by the result 
in Mumbai, ANN should perform better than SVM in Sao Paulo. However, 
when we compare the number of training samples in the two cases, we find 
that Sao Paulo has fewer training samples (545 pixels) than Mumbai (483 pix-
els). Although ANN can obtain better results with a statistical principle in a 
complex LULC environment, this advantage depends on a sufficient number 
of samples. When there are not enough samples, SVM can do better with a 
structural risk minimization approach. Nevertheless, considering the accu-
racy, the difference between ANN and SVM is not significant and thus clas-
sification methods are still not a major issue in this case.

TABLE 6.4

Accuracy Assessment of Impervious Surface Estimation in Sao Paulo

Datasets

ANN SVM

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

Landsat TM/ETM+ 87.21% 0.7453 88.99% 0.7805
ENVISAT ASAR 72.82% 0.4579 73.18% 0.4671
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6.1.3.4 � Cape Town

The estimation of impervious surfaces using an optical image alone and a 
SAR image alone is demonstrated in Figure 6.7. ANN and SVM were com-
paratively applied for ISE in the Cape Town study area. Since the landscape 
of Cape Town is unique with relatively separated impervious surfaces and 
nonimpervious surfaces, it is easier to understand the results. From the ISE 
result derived from an optical image alone, a small amount of impervious 
surfaces were incorrectly classified as bare soil land and vegetated areas, 
which was mainly caused by the spectral confusion between bare soil and 

(a) (b)

(c) (d)

FIGURE 6.7
ISE using optical and SAR images alone in Cape Town. (a) Landsat TM using ANN (June 2, 
2011), (b) Landsat TM using SVM (June 2, 2011), (c) ENVISAT ASAR using ANN (August 9, 
2011), and (d) ENVISAT ASAR using SVM (August 9, 2011).
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impervious surfaces and between vegetation and impervious surfaces. 
However, linear features such as the road network can be identified clearly 
in the Cape Town region. Nevertheless, the ISE results from the SAR images 
alone in Cape Town were rather worse compared with those from only opti-
cal images. First, too many noises are noticeable over the whole area caused 
by the speckles in the SAR image. Second, impervious surfaces were greatly 
underestimated, with large area of impervious surfaces misclassified as non-
impervious surfaces. Third, most of the roads failed to be identified over the 
study area. These three negative effects were caused by the speckles in the 
SAR images. Therefore, the comparison indicates SAR data alone cannot pro-
vide good ISE results compared to using optical data alone. Moreover, since 
there are two speckle noises in the result images, it is difficult to identify the 
effectiveness of SAR data in separating impervious surfaces and vegetation 
or bare soil. Therefore, more assessment should be done through quantita-
tive analysis of the ISE results.

The accuracy assessment of the ISE results (Table 6.5) shows that optical 
data alone provided much higher accuracy than that from SAR data alone. 
Using only a Landsat TM/ETM+ image, the overall accuracy was 92.11% and 
the Kappa value was 0.8405 with the ANN classifier. The overall accuracy 
was 92.68% and the Kappa value was 0.8514 with the SVM classifier. In con-
trast, using only the ENVISAT ASAR image, the overall accuracy is 64.32% 
for the ANN classifier and 63.00% for the SVM classifier, with a Kappa coef-
ficient of 0.2386 and 0.2196, respectively. Therefore, the accuracy from single 
SAR data is rather low compared with the accuracy from optical data. This 
is consistent with the results demonstrated in the ISE images in Figure 6.7. In 
terms of the classification methods, ANN and SVM did not show significant 
differences in the results using either dataset, and thus it is not the major 
issue compared with the dataset itself.

6.1.4 � Discussion and Implications

This study compares optical and SAR data in terms of estimation of impervi-
ous surfaces using a single data source. Experimental results in four different 
cities of the tropical and subtropical regions show some important findings 

TABLE 6.5

Accuracy Assessment of Impervious Surface Estimation in Cape Town

Datasets

ANN SVM

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

Landsat TM/ETM+ 92.11% 0.8405 92.68% 0.8514
ENVISAT ASAR 64.32% 0.2386 63.00% 0.2196
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for both the advantages and disadvantages of each data source. First, in all 
the cases, using optical images alone provided a generally better result than 
using SAR data alone. The difference of overall accuracy varied from about 
7% to about 29%, while the difference of Kappa coefficient varied from about 
11% to about 60%. The results demonstrate that using optical images alone 
provide generally better identification of vegetation, dark impervious sur-
faces, and bright impervious surfaces, even though there are spectral confu-
sions between impervious surfaces and vegetation or bare soils. However, 
due to speckles of SAR images, the ISE results using SAR data alone were 
affected by numerous noises, especially on the boundaries between different 
land covers. These noises can influence the classification results dramatically 
and lower the accuracy, depending on the complexity of land cover patterns. 
In particular, linear features such as roads and bridges cannot be correctly 
identified using SAR data only. Second, SAR data was able to show some 
advantages for ISE compared with optical data. For instance, separation 
between bright impervious surfaces and bare soils could be reduced due to 
their different backscattering behaviors with microwave remote sensing. In 
addition, spectral confusions between dark impervious surfaces and vegeta-
tion could be reduced to some extent in the SAR images. Therefore, optical 
images and SAR images can provide complementary information for each 
other to improve the estimation of impervious surfaces. Third, in comparing 
the ANN and SVM classifiers, both methods demonstrated similar results 
when applied to the same dataset in the same study area. The differences 
of accuracy between the results from ANN and SVM were less than 1%. In 
general, our experimental results showed that SVM was more appropriate 
for using optical data alone, while ANN provided better results when using 
SAR data alone. However, this parameter is not so strong for all cases and it 
should depend on the land cover diversity in a specific application.

6.2 � Comparison of Different Levels of Fusion Strategies

For combining optical and SAR data to extract impervious surfaces, selection 
of an appropriate level of fusion (e.g., pixel level, feature level, or combina-
tional level) remains unclear. This section aims to address the issue by com-
paring different schemas of fusion strategies and exploring the best choices 
between optical and SAR remote sensing to improve the accuracy of ISE. 
The implementation of fusion strategies at different levels is just a general 
one that aims at investigating the overall differences of various strategies. In 
this section, SVM, one of the most commonly used machine-learning mod-
els, is employed to conduct the fusion at different levels. Additionally, since 
the comparison of fusion levels can be influenced by many factors such as 
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working frequency of SAR, spatial resolutions of optical and SAR data, and 
land cover diversity, this section does not use the same datasets as in Section 
6.1; instead, various combinations of optical and SAR data with different sen-
sors and spatial resolutions are selected to compare the impacts of different 
fusion levels. Since SPOT-5 data was not available, another city, Shenzhen, 
was chosen instead of Guangzhou by employing SPOT-5 and ENVISAT 
ASAR data. Table 6.6 shows the optical and SAR images in four different 
cities for this comparative experiment. There are different combinations of 
optical and SAR images; for instance, SPOT-5 and ENVISAT ASAR data were 
used for the Shenzhen case, Landsat TM and TerraSAR-X data were used 
for study the Mumbai and Sao Paulo cases, and Landsat TM and ENVISAT 
ASAR were used for the study in the Cape Town case. These various combi-
nations of datasets could also test the impacts of different spatial resolutions 
of optical and SAR images and different working modes of SAR images.

6.2.1 � Feature Extraction from Optical and SAR Data

The extracted features were prepared for the feature level fusion and decision 
level fusion. Two groups of features were extracted from the optical and SAR 
images, respectively. The first feature group, from optical images, included 
spectral features and texture features. In this study, two popular indices, 
NDVI and NDWI, were applied and considered as the spectral features, 
since they are calculated from the multispectral bands of optical images. For 
the texture features, GLCM was applied to the optical images with the size of 
the moving window as 3 × 3 and 7 × 7 according to our previous study. The 
3 × 3 pixel moving window was used to calculate the GLCM texture features 
for Landsat TM images and the corresponding resampled SAR images with 
lower spatial resolution. The 7 × 7 pixels window was applied to the SPOT-5 
and corresponding resampled SAR images with higher spatial resolution.

6.2.2 � Fusion Strategies at Different Levels

A number of methods were proposed to synergistically use optical and SAR 
images for various applications. Contextual information from neighboring 
pixels was considered to be useful and Markov random fields (MRFs) was 
used for the combined use of optical and SAR data (Solberg and Jain 1997). 

TABLE 6.6

Datasets of Four Cities for Comparing Different Fusion Levels

Study Site Optical Image SAR Image

Shenzhen SPOT-5 ENVISAT ASAR
Mumbai Landsat TM TerraSAR-X
Sao Paulo Landsat TM TerraSAR-X
Cape Town Landsat TM ENVISAT ASAR
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Nonparametric approaches (e.g., ANN and SVM) were also applied with the 
two data sources concatenated in a stacked vector (Pacifici et al. 2008). However, 
optical and SAR data should be treated differently since they carry different 
kinds of information (Tupin and Roux 2005). Thus, more advanced methods 
should be used by treating optical and SAR data in a different way. Decision 
fusion methods are used as they make final decisions on the results from dif-
ferent sources of data (e.g., by weighting the influence of different multisensors) 
(Pacifici et al. 2008). Additionally, ensemble methods (e.g., RF) are also applied 
at the decision level (Waske and van der Linden 2008). For the estimation of 
impervious surfaces, some research is conducted based on the use of optical 
and SAR images (Jiang et al. 2009; Leinenkugel et al. 2011; Yang et al. 2009b).

However, only parts of information (e.g., coherence, average intensity, tem-
poral change of intensity) were considered, and further research is needed to 
comprehensively explore the potentials of SAR data and the synergistic use 
of optical and SAR data for the accurate estimation of impervious surfaces. 
Moreover, the differences of different levels of fusion (e.g., pixel level, feature 
level, and decision level) remain unknown in terms of ISE.

In order to compare different levels of fusion strategies, the pixel level, fea-
ture level, and decision level are designed in this section. For the three levels 
of fusion, SVM is applied as the fusion method. To apply SVM, data from 
both the SPOT-5 and ASAR images are put together as the input to SVM, and 
the output is binary with impervious and nonimpervious surfaces. At the 
pixel level, the SPOT-5 and ASAR images are treated as the input without 
any feature extraction operations. At the feature level, texture features are 
extracted from both the SPOT and ASAR images, and these texture feature 
maps will be the input of the fusion instead of the data at the pixel level. For 
the combinational level, both the original multispectral bands and GLCM-
based texture features were combined for the ISE. Table 6.7 shows the data or 
features from the two data sources in different levels of fusion.

6.2.3 � Fusion Results on Different Levels

6.2.3.1 � Shenzhen

Fusion between SPOT-5 and ASAR images was conducted in the Shenzhen 
case at three levels: the pixel, feature, and combinational levels. Figure 6.8 
reveals the results of ISE from the three different levels of fusion. A false 

TABLE 6.7

Fusion Strategies of Three Different Levels

Fusion Level Optical Image SAR Image

Pixel level Original multispectral bands data Backscattering intensity
Feature level NDVI, NDWI, GLCM features GLCM textures
Combinational level Multispectral bands, GLCM 

features
Backscattering intensity, GLCM 
textures
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color image of the study area (Figure 6.8a) is also provided to give a better 
understanding of the results. There are several interesting findings. First, 
the results from pixel level and feature level fusion were characterized with 
more shaded areas (dark holes) (Figure 6.8b and c) due to the shadows from 
tall buildings (Figure 6.8a). However, these dark holes are reduced in the 
result of combinational fusion (Figure 6.8d). Second, it shows some edge 
effects in the results of feature-level and decision-level fusions. These edge 
effects are caused by the use of texture features, as they are calculated with 
four window sizes. Third, bare soils can be more easily separated at the fea-
ture level and combinational level fusions. Located on the dark blocks of the 
result images are some bare soils, appearing in yellow and bright colors in 

(a) (b)

(c) (d)

FIGURE 6.8
ISE with optical SAR fusion in Shenzhen. (a) SPOT-5 (RGB: 4-1-2), (b) pixel-level fusion, 
(c) feature-level fusion, and (d) combinational-level fusion.  
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the corresponding false-color image (Figure 6.8a). This shows us that these 
dark blocks are more pure in Figure 6.8c and d, while some small areas of 
bare soils were mistakenly classified as impervious surfaces in Figure 6.8b. 
To summarize, the result of decision fusion appears to be the best, as there 
are less shaded areas and less incorrectly classified bare soils.

6.2.3.2 � Mumbai

The impervious surfaces estimated using combined optical and SAR images 
at various fusion levels are shown in Figure 6.9. For an easier understanding 
of the results, a false-color image of the Landsat TM data is provided in the 

(a) (b)

(c) (d)

FIGURE 6.9
ISE with optical SAR fusion in Mumbai. (a) Optical image, (b) pixel-level fusion, (c) feature-
level fusion, and (d) combinational-level fusion.
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figure. At the pixel level, there was noticeable misclassification in vegetated 
areas and bare soils with some impervious surfaces wrongly identified. 
These incorrect impervious surfaces showed some characteristics such as 
noises that were actually caused by the speckles from SAR images. Due to 
the land cover characteristics, overestimation of impervious surfaces could 
be observed as in the result using a single optical image shown in Section 
6.1. At the feature level, the influence from speckles in SAR images was 
reduced with less impervious surfaces classified from vegetation and bare 
soil areas. The boundaries between impervious surfaces and nonimpervi-
ous surfaces were also clearer, making the results generally better by visual 
interpretation. At the combinational level, compared with the results at 
the feature level, the noisy misclassified impervious surfaces from vegeta-
tion and bare soil were not reduced significantly. The boundaries between 
impervious surfaces and nonimpervious surfaces remained the same as at 
the feature level. However, the overestimation of impervious surfaces in 
the central urban areas was increased slightly. In general, feature-level and 
combinational-level fusion were more appropriate for the fusion between 
optical and SAR images for ISE in the Mumbai area. Pixel-level fusion was 
influenced by the speckles in SAR images and thus was not suitable in this 
study case.

6.2.3.3 � Sao Paulo

The estimation of impervious surfaces using different levels of fusion with 
optical and SAR images is shown in Figure 6.10. The original optical image is 
provided in Figure 6.10a for a better visual interpretation of the ISE results. 
The results show some characteristics of ISE by combining optical and SAR 
images at various fusion levels. At the pixel level, influences of speckles in 
SAR data could be observed in intensive residential areas where tall build-
ings produced some shadows. As a result, some noisy impervious surfaces 
are noticeable on the upper part of the study area. Moreover, boundaries 
between impervious surfaces and nonimpervious surfaces were also unclear 
with noises. At the feature level, the estimated impervious surfaces were 
much better classified by visual interpretation. The speckle effect was notice-
ablely reduced over the whole area. Boundaries between impervious surfaces 
and nonimpervious surfaces were much clearer. However, overestimation 
of impervious surfaces occurred slightly over some vegetated areas. At the 
combinational level, similar to the feature-level fusion result, the speckle 
effect was reduced and boundary classification was improved. Moreover, 
less overestimation can be found compared with the result at the feature-
level fusion. Therefore, combinational-level fusion was the most appropriate 
strategy for combining optical and SAR images for ISE in the Sao Paulo case, 
while pixel-level fusion was not suitable due to the impact of the speckles 
from SAR images.
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6.2.3.4 � Cape Town

The results of impervious surfaces estimated from combining optical and 
SAR images at various fusion levels are shown in Figure 6.11. The first fig-
ure shows the original Landsat TM image for a better understanding of the 
results. It can be seen that impervious surfaces and nonimpervious surfaces 
are naturally separated from each other in a relatively regular way compared 
with other cities in this research. From the results, some differences can be 
noted for various fusion levels. At the pixel level, the speckles in the SAR 
image were able to influence the result with some noises in the vegetation 

(a) (b)

(c) (d)

FIGURE 6.10
ISE with optical SAR fusion in Sao Paulo. (a) Optical image, (b) pixel-level fusion, (c) feature-
level fusion, and (d) combinational-level fusion.  
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and bare soil land. Even though bare soil and vegetation are spectrally con-
fused in the Cape Town area as shown in Chapter 5, this spectral confu-
sion did not affect the result of ISE since vegetation and bare soil are both 
nonimpervious surfaces. This observation can be noticed in the results at 
all levels of fusion. At the feature level, the result looks better with clearer 
boundaries of impervious surfaces and nonimpervious surfaces, as well as 
cleaner vegetation and bare soil areas. The combinationa-level fusion result 
was very similar to that at the feature level. Both feature- and combinational-
level fusion produced better ISE than pixel-level fusion. However, it should 
be noted that linear features such as road network were not well classified in 

(a) (b)

(c) (d)

FIGURE 6.11
ISE with optical-SAR fusion in Cape Town. (a) optical image, (b) pixel level fusion, (c) feature-
level fusion, and (d) combinational level fusion.  
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all the levels of fusion, indicating the limitation of the additional use of SAR 
images in the Cape Town study area.

6.2.4 � Comparisons of the Accuracy Assessment

In order to compare the results from different levels of fusion in a quan-
titative way, the overall accuracy and kappa coefficient were calculated 
based on the test samples. In addition, to evaluate the effectiveness of the 
fusion approach for ISE, an additional classification was applied on the opti-
cal images separately for each study case and corresponding accuracy was 
calculated for comparison. Tables 6.8 through 6.11 compare the accuracies 
over different strategies of ISE. Some interesting results can be observed. 
Different fusion levels illustrate different characteristics for combining opti-
cal and SAR data to estimate impervious surfaces. First, for all the four cases, 
pixel-level fusion did not show good ability to fuse the two data sources 
due to the decrease of the accuracy of ISE. Compared with using optical 
images alone, the decreasing accuracy at the pixel-level fusion are 0.20%, 
0.32%, 4.09%, and 1.04%, respectively, for Shenzhen, Mumbai, Sao Paulo, and 

TABLE 6.8

Comparison of Accuracy Assessment in Shenzhen

Fusion Overall Accuracy Kappa Coefficient

Single optical data 78.47% 0.5694
Pixel level 78.27% 0.5654
Feature level 80.83% 0.6166
Combinational level 80.53% 0.6107

TABLE 6.9

Comparison of Accuracy Assessment in Mumbai

Fusion Overall Accuracy Kappa Coefficient

Single optical data 92.23% 0.845
Pixel level 91.91% 0.8385
Feature level 95.06% 0.901
Combinational level 94.34% 0.8867

TABLE 6.10

Comparison of Accuracy Assessment in Sao Paulo

Fusion Overall Accuracy Kappa Coefficient

Single optical data 91.56% 0.8315
Pixel level 87.47% 0.7495
Feature level 92.40% 0.8481
Combinational level 92.48% 0.8497
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Cape Town, respectively. As a result, there is slight decrease in Shenzhen 
and Mumbai and a noticeable decrease in Sao Paulo and Cape Town. The 
inapplicability of fusing optical and SAR images at the pixel level has been 
reported previously (Soergel 2010; Zhang et al. 2010) indicating that the dif-
ferent working modes of optical and SAR remote sensing make pixel-level 
fusion inappropriate for combining the two sources of data. The results of 
this study support the conclusion found in the previous research. As well, 
we found that this decrease of accuracy is even more for urban areas in the 
southern sphere. Second, feature-level fusion could improve the accuracy of 
ISE compared with using optical data alone. The overall accuracy for the four 
cities were 78.47%, 92.23%, 91.56%, and 92.68% for Shenzhen, Mumbai, Sao 
Paulo, and Cape Town, and the Kappa coefficients were 0.5694, 0.845, 0.8315, 
and 0.8514, respectively. After fusing optical and SAR images, the overall 
accuracies were 80.83%, 95.06%, 92.40%, and 92.49%, and Kappa values were 
0.6166, 0.901, 0.8481, and 0.8481. This shows a general improvement of the 
accuracy with the feature-level fusion of optical and SAR images. Third, com-
binational level fusion was also able to generally improve the ISE result; how-
ever, whether combinational-level fusion is superior to feature-level fusion 
depends on the study area. The overall accuracy with combinational level 
fusion are 80.53%, 94.34%, 92.48%, and 93.05% and the Kappa coefficients are 
0.6107, 0.8867, 0.8497, and 0.8596. Hence, a general increase of both the overall 
accuracy and Kappa coefficient could be noticed. However, the improvement 
by feature-level fusion and combinational fusion is different for different cit-
ies and whether the combinational level fusion is better depends on the study 
area. For instance, the accuracy obtained by feature-level fusion was higher 
than that by combinational-level fusion in Shenzhen and Mumbai, while 
combinational-level fusion was superior in Sao Paulo and Cape Town.

These results may be caused by several factors, such as the resolution of 
the images, climate categories, and the land cover diversity of the study 
area. In Shenzhen, the optical data and SAR data are SPOT-5 and ENVISAT 
ASAR images, in Mumbai and Sao Paulo they are Landsat TM and TerraSAR-X 
images, and in Cape Town they are Landsat TM and ENVISAT ASAR images. 
Therefore, there is no direct relationship between the improvement of accuracy 
and resolution of optical and SAR images. It is interesting that TerraSAR-X 
is not necessarily better than ENVISAT ASAR data for improving ISE accu-
racy, although the resolution of TerraSAR-X data is much higher than that of 

TABLE 6.11

Comparison of Accuracy Assessment in Cape Town

Fusion Overall Accuracy Kappa Coefficient

Single optical data 92.68% 0.8514
Pixel level 91.64% 0.8305
Feature level 92.49% 0.8481
Combinational level 93.05% 0.8596
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ENVISAT ASAR data. This may be caused by the downsampling of the SAR 
data before combining optical and SAR images, and thus the final results may 
depend on the resolution of the optical images. In terms of the climate types, 
Shenzhen and Sao Paulo have a subtropical humid climate, Mumbai has a 
tropical wet and dry climate, and Cape Town is located in a Mediterranean 
climate region. There is also no direct relationship between climate types and 
accuracy. However, when it comes to the land cover diversity of the study 
area, we find the land covers in Shenzhen and Mumbai are much more com-
plicated than those in Sao Paulo and Cape Town. In Shenzhen and Mumbai, 
the urbanization process was more irregular and fragmentation of imper-
vious surfaces could be observed in the study area. Nevertheless, the land 
covers in Sao Paulo and Cape Town are relatively simple with more clearly 
separated impervious surfaces and nonimpervious surfaces. To summarize, 
the results indicate that combinational-level fusion is more suitable for ISE of 
urban areas with less diverse land covers, while feature-level fusion is more 
appropriate for urban areas with more diverse land covers.

6.2.5 � Discussion and Implications

This study compares three different fusion levels: pixel level, feature level, 
and combinational level, regarding optical and SAR images in terms of ISE. 
Spectral and texture features are extracted from the optical and SAR images, 
as well as the detailed design of fusion strategies for pixel-, feature-, and 
combinational-level fusions. SVM is then employed to conduct the fusion 
operation. The experimental results show some important conclusions for 
selecting the fusion strategy of fusing optical and SAR data. First, pixel-level 
fusion is not appropriate for optical and SAR image fusion due to speckles 
in SAR data (Soergel 2010). At the pixel-level fusion, there is no handling of 
the speckles, and thus this random signal can affect the fusion procedure 
and influence the final ISE results. Consequently, it reduces the accuracy 
even compared with the single use of optical data. This result is consistent 
in the four study cases. Second, both feature-level and combinational-level 
fusion are able to improve the accuracy of ISE by fusing optical and SAR 
data. However, whether feature-level or combinational-level fusion is better 
for optical-SAR fusion may depend on specific cases in terms of the land 
cover diversity and complexity. For instance, as the experimental results 
indicated, combinational-level fusion had best accuracy in Sao Paulo and 
Cape Town, where the land covers are not so complex and impervious sur-
faces and nonimpervious surfaces are more easily separated. Meanwhile, 
feature-level fusion had the best results in Shenzhen and Mumbai where 
much more complex land covers can be observed due to irregular urbaniza-
tion with fragmentation of impervious surfaces. As a result, we conclude that 
combinational-level fusion is more suitable for ISE of urban areas with less 
diverse land covers, while feature-level fusion is more appropriate for urban 
areas with more diverse land covers.
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6.3 � Comparison of Different Image Features

6.3.1 � Experiment Design

This comparison study aims to investigate the effectiveness of different image 
features of both optical and SAR images. Two study sites, Hong Kong and Sao 
Paulo, were selected with two different sets of optical and SAR images. In Hong 
Kong, SPOT-5 was used as the optical image and TerraSAR-X as the SAR image. 
In Sao Paulo, Landsat TM and TerraSAR-X were employed as the optical and 
SAR images, respectively. Table 6.12 shows the datasets used in this study.

In order to synergize the optical and SAR images, both spectral and spatial 
features were extracted from the two data sources. Table 6.13 shows the fea-
tures extracted from the two images. For the optical image, NDVI and NDWI 
are calculated as the spectral feature and GLCM-based and SAN-based tex-
ture features are also calculated. Moreover, the shape feature based on SAN 
is also computed from the optical images. For the SAR images, as there is 
only one single band, the GLCM-based texture features are calculated. As 
described in Chapter 3, four texture measures, the mean, variance, HOM, 
DISS, ENT, and ASM, were employed as the GLCM-based texture measures, 
and the window size to calculate the GLCM was 3 × 3 pixels (for 30m res-
olution) and 7 × 7 pixels (for 10m resolution). To calculate the SAN-based 
features, the size of view port (Section 3.5, Figure 3.11) was set to be 11 × 11 
pixels, ω1, ω2, and ω3 in Equation 3.2 were empirically set to be 0.8, 0.2, and 0, 
respectively, and the H in Equation 3.3 was set as [1, 2] empirically. The form 
factor (F) in Equation 3.4 was chosen as the shape feature. Therefore, there 
were two texture features and two shape features of the SAN.

In terms of the fusion and classification methods, SVM was employed and 
compared to classify the land covers and estimate the impervious surfaces. 
Key parameters in these methods were optimized with an iteration process 
(see Section 6.1), where different values are tested and the ones with optimal 

TABLE 6.13

Selection of Feature Measures of Optical and SAR Images

Features Optical Image SAR Image

Spectral feature NDVI, NDWI None
Texture feature GLCM texture, SAN texture GLCM texture
Shape feature SAN shapes None

TABLE 6.12

Datasets of Two Cities for Comparing Different Features

Study Site Optical Image SAR Image

Hong Kong SPOT-5 TerraSAR-X
Sao Paulo Landsat TM TerraSAR-X
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accuracy are used as the optimal parameters. The penalty (C) and gamma 
(G) in the kernel function are selected as the key parameters. The penalty 
was tested from 100 to 1500 with a step of 100, and the gamma was tested 
from 0.0000001 (10e-7) to 0.5 by testing 14 values.

For the fusion strategy, in this study, the combination level of fusion was 
adopted, as it takes into account both the original data and various fea-
tures. In a combinational fusion, different combinations of features can be 
designed as the input of the fusion and classification. Table 6.14 demonstrates 
four different combination strategies where various combinations of optical 
features and SAR features are designed. There are five modes of strategies 
used in this study—OPT, OPT_SG, OPT_SGS, OPT_SAR, and OPT_SAR_S—
with corresponding image data and features listed in Table 6.14. Among 
these modes, OPT includes only the original data of optical images. OPT_SG 
and OPT_SGS use only optical image data and features, while OPT_SAR and 
OPT_SARS use both optical and SAR images and their features.

6.3.2 � Results of Feature Extractions

6.3.2.1 � Features of Optical Images

6.3.2.1.1  Spectral Features

Spectral features were calculated from both SPOT-5 and Landsat TM images 
to represent the characteristics of spectral reflectance in each pixel. NDVI 
and NDWI were employed as the spectral features. Figure 6.12 shows the 
NDVI and NDWI of optical images in Hong Kong and Sao Paulo. It can be 
seen that vegetation was well recognized by high values of NDVI, and the 
water surfaces are highlighted in the NDWI images. Figure 6.12 shows that 
vegetated areas are mainly distributed on the mountainous regions and the 
greening areas of the residential region. Water surfaces are mainly located 
on the sea, rivers, and lakes. However, shaded areas also have high values of 
NDWI due to their low reflectance.

6.3.2.1.2  GLCM Features

GLCM was calculated from optical images and then various texture mea-
sures were calculated from the GLCM to extract the texture features. In 
this study, in order to extract the texture features as much as possible, six 

TABLE 6.14

Design of Combinational-Level Fusion

Code Optical Image Optical Image Features SAR Image SAR Features

OPT Original data N/A N/A N/A
OPT_SG Original data Spectral, GLCM N/A N/A
OPT_SGS Original data Spectral, GLCM, SAN N/A N/A
OPT_SAR Original data Spectral, GLCM Intensity GLCM
OPT_SARS Original data Spectral, GLCM, SAN Intensity GLCM
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frequently used texture measures were employed, including mean (MEA), 
variance (VAR), HOM, DIS, ENT, and SMA. Figures 6.13 and 6.14 show the 
GLCM-based texture feature images from the first band of the optical images 
in Hong Kong and Sao Paulo. These texture images illustrate different char-
acteristics in high-resolution images (SPOT-5) and moderate-resolution 
images (Landsat TM).

First, in Hong Kong, water and land is well separated in all six feature 
images. Edges between two land covers are highlighted in the VAR feature. 
However, the sea area on the northwestern part is separated into two small 
parts caused by the water quality. Only the DIS image appears less impacted 
by the water quality difference. Moreover, some linear terrains (roads, high-
ways, and rivers) also show some differences in each of the feature images. 
However, all these feature images illustrate an edge effect due to the rectan-
gular windows when calculating GLCM.

(a) (b)

(c) (d)

FIGURE 6.12
Spectral features of optical images in Hong Kong and Sao Paulo. (a) NDVI (Hong Kong), 
(b) NDWI (Hong Kong), (c) NDVI (Sao Paulo), and (d) NDWI (Sao Paulo).
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Second, the Sao Paulo images demonstrated a different view of these 
GLCM features. Water and other land covers could be separated well in the 
MEA and SMA features but rivers were only highlighted in MEA, HOM, and 
DIS features. The VAR image highlights the boundaries in the residential 
region and thus may be beneficial for classifying impervious surfaces from 

(a) (b)

(c) (d)

(e) (f )

FIGURE 6.13
GLCM-based textures of SPOT image in Hong Kong. (a) MEA, (b) VAR, (c) HOM, (d) DIS, 
(e) ENT, and (f) SMA.
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(a) (b)

(c) (d)

(e) (f )

FIGURE 6.14
GLCM-based textures of SPOT images in Sao Paulo. (a) MEAM, (b) VAR, (c) HOM, (d) DIS, 
(e) ENT, and (f) SMA.
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nonimpervious surfaces. Nevertheless, the ENT does not show too much 
useful information over the whole study area in Sao Paulo, which indicates 
that a feature selection procedure may be needed in order to select the most 
effective features before classification. The ineffectiveness of some GLCM 
texture features may be caused by two possible factors: the medium spatial 
resolution of the Landsat TM image and the land cover characteristics of Sao 
Paulo. Compared with the SPOT-5 image in Hong Kong, the lower resolution 
and simpler land cover characteristics in the Sao Paulo image show less rich 
texture information and thus lead to some ineffective texture feature images.

6.3.2.1.3  SAN Features

In this study, the SAN technique (Zhang et al. 2013) was employed to extract 
both the texture and shape features from optical images in Hong Kong and 
Sao Paulo, which are shown in Figures 6.15 and 6.16. These SAN feature 
images show some totally different patterns of the images. In Hong Kong, 

(a) (b)

(c) (d)

FIGURE 6.15
SAN-based textures and shape features in Hong Kong. (a) SAN texture (Step = 1), (b) SAN tex-
ture (Step = 2), (c) SAN shape feature (Step = 1), and (d) SAN shape feature (Step = 2).
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the SAN-based textures were able to separate the sea area from the land and 
identify the bridge across the sea. Moreover, most of the mountain area could 
also be separated by the SAN texture images. Residential areas also showed 
some good consistency in the texture images. For the shape features, which 
could be obtained by GLCM, the boundaries of buildings, roads, and coastal 
line could be easily identified (Figure 6.15c and d). As well, the SAN shape 
features were insensitive to the water quality variation of the sea surface. In 
addition, both the SAN texture and shape images had much less edge effect 
compared with the GLCM texture images.

(a) (b)

(c) (d)

FIGURE 6.16
SAN-based textures and shape features in Sao Paulo. (a) SAN texture (Step = 1), (b) SAN texture 
(Step = 2), (c) SAN shape feature (Step = 1), and (d) SAN shape feature (Step = 2).  
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In Sao Paulo, the SAN features also showed very different patterns from 
the GLCM features (Figure 6.16). However, both advantages and disadvan-
tages could be observed in the SAN feature images in Sao Paulo. Lakes were 
well separated in the SAN texture features, and the river could be identi-
fied from the shape features. Residential areas were highlighted in the shape 
features, which may be helpful for the classification of impervious surfaces. 
However, the SAN texture features seemed to add some noises over other 
land covers with no noticeable separation between different features except 
water surfaces, which may be negative in the classification results.

6.3.2.2 � Features of SAR Images

6.3.2.2.1  GLCM Features

Compared with optical images, SAR images do not carry much informa-
tion such as rich spectral information. In this study, only single-polarization 
SAR data was used and thus texture features were calculated from the SAR 
images. Similarly, six texture measures were employed including MEA, 
VAR, HOM, DIS, ENT, and SMA to represent the texture features of the 
SAR images. Even though the SAR data used in this study is TSX data in 
both Hong Kong and Sao Paulo, they were resampled according to the cor-
responding optical images. Thus, the final spatial resolutions of TSX images 
were different in Hong Kong and Sao Paulo. Moreover, the land cover char-
acteristics are also different in the two study cases. Therefore, the GLCM 
texture features showed a very different view in Hong Kong and Sao Paulo, 
which can be observed in Figures 6.17 and 6.18.

In Hong Kong, water surfaces on the sea could be easily separated due to 
their surface geometric characteristics. Tall buildings could be easily identi-
fied from the MEA and VAR images due to their high backscattering charac-
teristics. Some man-made objects, such as sets of containers, were highlighted 
in the DIS image. However, residential area and greening areas in the city 
could be well separated in the texture images of TSX data, reflected by their 
similar texture features in Figure 6.17.

In Sao Paulo, the water surfaces and other land covers were well sepa-
rated in the MEA and VAR features (Figure 6.18). In particular, the whole 
river could be well identified from the MEA image, which was much bet-
ter than other features from the optical image. In addition, residential areas 
with dark impervious surfaces could also be easily observed in the MEA and 
DIS images. However, it was difficult to separate other land covers, such as 
bare soil and vegetation, from these TSX feature images. Additionally, the 
ENT and SMA images generally showed some negative information for all 
types of land covers, which would add a negative effect to the classification 
and ISE. Therefore, a feature selection was also needed for the TSX GLCM 
features in Sao Paulo before classification.
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(a) (b)

(c) (d)

(e) (f )

FIGURE 6.17
GLCM-based textures of TerraSAR-X images in Hong Kong. (a) MEA, (b) VAR, (c) HOM, (d) DIS, 
(e) ENT, and (f) SMA.
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(a) (b)

(c) (d)

(e) (f )

FIGURE 6.18
GLCM-based textures of TerraSAR-X images in Sao Paulo. (a) MEA, (b) VAR, (c) HOM, (d) DIS, 
(e) ENT, and (f) SMA.
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6.3.3 � ISE and Comparisons

6.3.3.1 � LULC Classification

Figure 6.19 demonstrates the classification results of six land cover types 
using the combination level of fusion of SPOT-5 and TSX images in Hong 
Kong. SVM was employed as the fusion and classification method, as SVM 
has been widely considered to be one of the best and most stable machine-
learning approaches. The original SPOT-5 image is provided for a better 
understanding of the classification results. The result showed that seawater 
could be well separated using only original optical data, while river water 
was confused with shaded areas. Moreover, impervious surfaces were mixed 
with bare soil and vegetation in the central urban areas. The confusion 
between impervious surfaces and other land covers could be reduced using 
various feature combinations. However, when using either the GLCM fea-
tures or the SAN features, edge effects could be observed from Figure 6.19c 
to f. It shows that both dark and bright impervious surfaces could generally 
be classified with some small greening areas separated. Shaded areas from 
tall buildings and hills could also be identified. Fortunately, edge effects 
were reduced by using the SAN features (Figure 6.19d and f). However, dif-
ferent water qualities in the sea surface lead to some incorrect classification 
of sea even though the additional use of SAN features and TSX data was able 
to improve the classification. There were still some parts of the sea surface 
incorrectly classified as shaded area.

In the classification results of Sao Paulo, different image features demon-
strate different impacts on the classification results (Figure 6.20). Using only 
the original optical image, water surfaces in the rivers and lakes could be 
well identified. However, some shaded areas from tall buildings were incor-
rectly classified as water surfaces due to their low reflectance similar to water 
surfaces. Dark impervious surfaces were confused with shaded areas and 
vegetation, which produced some noises in the classification results. With 
the additional use of images features from both optical and SAR data, these 
confusions could be noticeably reduced, especially the spectral confusion 
between water surfaces and shaded areas. Noises in the results were also 
reduced. Nevertheless, edge effects could be observed from all the results 
using image features, which were caused by the calculation of GLCM tex-
ture features using a moving window. With the additional use of SAN fea-
tures, the confusion between dark impervious surfaces and shaded areas 
were reduced. However, by using additional SAN features, some shaded 
areas were incorrectly identified as impervious surfaces, which may cause 
some negative impacts to the ISE results. Additionally, it should be noted 
that there are no significant shape features in the optical image in Sao Paulo, 
mainly due to the medium spatial resolution of Landsat TM. Consequently, 
the shape features may cause some negative impacts to the results.

To quantitatively assess the classification results, the overall accuracy and 
Kappa coefficient were calculated and are shown in Table 6.15. In the Hong 
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(a) (b)

(c) (d)

(e)

WAT VEG SOI DIS BIS SHA

(f )

FIGURE 6.19
LULC classification results in Hong Kong. (a) SPOT-5 image (R-G-B = bands 4-2-1), (b) OPT, 
(c) OPT_SG, (d) OPT_SGS, (e) OPT_SAR, and (f) OPT_SARS. OPT = original optical image alone; 
OPT_SG = spectral and GLCM features of the optical image; OPT_SGS = spectral, GLCM, and 
SAN features of the optical image; OPT_SAR = spectral and GLCM features of the optical 
image as well as intensity and GLCM features of the SAR image; OPT_SARS = spectral, GLCM, 
and SAN features of the optical image as well as intensity and GLCM features of the SAR 
image; WAT = water; VEG = vegetation; SOI = bare soil; DIS = dark impervious surfaces; BIS = 
bright impervious surfaces; SHA = shaded area.
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(a) (b)

(c) (d)

(e) (f )
WAT VEG SOI DIS BIS SHA

FIGURE 6.20
LULC classification results in Sao Paulo. (a) Optical image, (b) OPT, (c) OPT_SG, (d) OPT_SGS, 
(e) OPT_SAR, and (f) OPT_SARS. OPT = original optical image alone; OPT_SG = spectral and 
GLCM features of the optical image; OPT_SGS = spectral, GLCM, and SAN features of the optical 
image; OPT_SAR = spectral and GLCM features of optical image as well as intensity and GLCM 
features of the SAR image; OPT_SARS = spectral, GLCM, and SAN features of the optical image 
as well as intensity and GLCM features of the SAR image; WAT = water; VEG = vegetation; SOI = 
bare soil; DIS = dark impervious surfaces; BIS = bright impervious surfaces; SHA = shaded area.
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Kong case, with only original SPOT data, the overall accuracy was only 
84.05% and the Kappa coefficient was 0.8086. When the features of a SPOT 
image were added, the overall accuracy was 86.76% and the Kappa value was 
0.8409 by using the spectral features and GLCM texture features. The over-
all accuracy increased to 87.36% and Kappa increased to 0.8481 by combin-
ing the SAN texture and shape features. By fusing both the SPOT and TSX 
data, the accuracy was improved to more than 88% for the overall accuracy 
and more than 0.85 for the Kappa coefficient. Similarly, the additional use of 
SAN features improved the accuracy during the fusion of SPOT-5 and TSX 
data. Therefore, the best result came from the use of SPOT-5 and TSX data 
combined with the use of SAN features of the SPOT-5 image, with an overall 
accuracy of 88.77% and a Kappa coefficient of 0.8649.

In Sao Paulo, the lowest accuracy was also obtained from using only 
original Landsat TM data, with an overall accuracy of 84.96% and a Kappa 
coefficient of 0.8009. Classification accuracy was increased by using image 
features of Landsat TM image (overall accuracy: 90.14%, Kappa coefficient: 
0.8695), and it was further increased by the additional use of TSX data (over-
all accuracy: 91.03%, Kappa coefficient: 0.8813). However, the additional use 
of SAN features from optical images did not show positive impacts on the 
classification. Even though SAN shape features provide some useful infor-
mation, shape features in medium-resolution images are not significant. In 
contrast, the shape features in medium-resolution images produce some 
noises that cause negative impacts to the classification. Consequently, SAN 
features had a slight negative impact on the final classification results. This 
result indicates that the effectiveness of SAN features depends on the spatial 
resolution of the satellite data.

6.3.3.2 � ISE

By combining the dark and bright impervious surfaces, and the vegetation, 
water, soil, and shaded areas, estimations of impervious surfaces were pro-
duced as shown in Figures 6.21 and 6.22. From the estimation results in the 
Hong Kong case (Figure 6.21), it can be seen that some shaded areas (e.g., area 

TABLE 6.15

Accuracy Assessment of Different Combinations of Datasets and Features

Feature 
Combination

Hong Kong Sao Paulo

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

OPT 84.05% 0.8086 84.96% 0.8009
OPT_SG 86.76% 0.8409 90.14% 0.8695
OPT_SGS 87.36% 0.8481 89.65% 0.8627
OPT_SAR 88.16% 0.8577 91.03% 0.8813
OPT_SARS 88.77% 0.8649 90.06% 0.8677
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(a) (b)

(c) (d)

(e) (f )

FIGURE 6.21
ISE by combining LULC subtypes in Hong Kong. (a) Optical image, (b) OPT, (c) OPT_SG, 
(d) OPT_SGS, (e) OPT_SAR, and (f) OPT_SARS. OPT = original optical image alone; OPT_SG = 
spectral and GLCM features of the optical image; OPT_SGS = spectral, GLCM, and SAN fea-
tures of the optical image; OPT_SAR = spectral and GLCM features of the optical image as well 
as intensity and GLCM features of the SAR image; OPT_SARS = spectral, GLCM, and SAN 
features of the optical image as well as intensity and GLCM features of the SAR image.
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(a) (b)

(c) (d)

(e) (f )

FIGURE 6.22
ISE results in Sao Paulo. (a) Optical image, (b) OPT, (c) OPT_SG, (d) OPT_SGS, (e) OPT_SAR, 
and (f) OPT_SARS. OPT = original optical image alone; OPT_SG = spectral and GLCM fea-
tures of the optical image; OPT_SGS = spectral, GLCM, and SAN features of the optical image; 
OPT_SAR = spectral and GLCM features of the optical image as well as intensity and GLCM 
features of the SAR image; OPT_SARS = spectral, GLCM, and SAN features of the optical 
image as well as intensity and GLCM features of the SAR image.
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along the sea) and bare soils (located on the mountains) were misclassified as 
impervious surfaces for all four combinational fusions. In this study, shaded 
areas were treated as nonimpervious surfaces, and thus confusion between 
shaded areas and water surfaces on the sea did not impact the result of ISE. 
Again, SAN features are able to reduce the edge effects of ISE. These types of 
edge effects are not only located on the edges of the whole image, but are also 
located on the boundaries between different land objects, which is the main 
reason why SAN is able to improve the classification accuracy.

The ISE in Sao Paulo demonstrates a consistent result to the LULC clas-
sification (Figure 6.22). With only the original Landsat TM image, spectral 
confusions between dark impervious surfaces and vegetation and between 
dark impervious surfaces and shaded areas produced misclassifications in 
the ISE result (Figure 6.22b). After combining the image features from both 
optical and SAR images, misclassifications such as noises in the residential 
areas were noticeably reduced. However, similar to the LULC classification, 
the additional use of image features produced edge effects in the results. 
Moreover, from the ISE results using additional SAN features (Figure 6.22d 
and f), an overestimation of impervious surfaces can be observed over the 
whole area, which was caused by the noisy SAN shape features.

To assess the accuracy of ISE, confusion-matrix-based accuracies were cal-
culated as shown in Table 6.16. After combining different land covers, the 
general accuracy was increased as the incorrectness between subtypes of 
impervious surfaces and nonimpervious surfaces was reduced. In Hong 
Kong, the general pattern of the accuracy was similar to that of the LULC 
classification. The combined use of SPOT-5 and TSX data increased the accu-
racy of ISE. The highest accuracy of ISE came from the use of SPOT and TSX 
combined with the additional SAN features, and the overall accuracy was 
97.49% with the Kappa value of 0.9467. However, a slight decrease of accuracy 
can be observed when combining the SAN with the single use of SPOT data, 
where the overall accuracy decreased from 96.69% to 96.59, and the Kappa 
value decreased from 0.9295 to 0.9273. This was caused by the combination of 
different subtypes of land covers. As discussed in Section 7.5.2, SAN feature 

TABLE 6.16

Accuracy Assessment of Different Combinations of Dataset and Features

Feature 
Combination

Hong Kong Sao Paulo

Overall 
Accuracy

Kappa 
Coefficient

Overall 
Accuracy

Kappa 
Coefficient

OPT 96.49% 0.9251 91.56% 0.8315
OPT_SG 96.69% 0.9295 91.67% 0.8335
OPT_SGS 96.59% 0.9273 91.35% 0.8270
OPT_SAR 96.89% 0.9337 92.97% 0.8594
OPT_SARS 97.49% 0.9467 92.00% 0.8400
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provide better hints to separate the different water qualities of the sea sur-
face as well as to reduce the edge effects, and thus, with SAN feature, fewer 
water surfaces were misclassified as shaded areas. However, the confusion 
between water surfaces and shaded areas was removed during the estima-
tion of impervious surfaces. Therefore, improvement by using SAN in the 
LULC classification will be reduced in the ISE.

In Sao Paulo, the improvement of using various images features can also 
be observed from the accuracy assessment (Table 6.16). The lowest accuracy 
comes from using only original the optical image, with an overall accuracy of 
91.56% and a Kappa coefficient of 0.8315. The overall accuracy was improved 
to 91.67% by using additional features of optical images, and to 92.97% by 
using features of both optical and SAR images, which was also the highest 
accuracy in the Sao Paulo case. The improvement of Kappa coefficient was 
0.8335 and 0.8594, respectively. However, the negative effect of SAN features 
in the Sao Paulo case is also shown in Table 6.16, indicating that SAN features 
are only effective in high-resolution images.

6.3.4 � Discussion and Implications

An experiment was designed and conducted to evaluate the efficiency of 
different image features of optical and SAR images for ISE. Spectral, texture, 
and shape features were extracted from optical and SAR images. Two sets of 
optical and SAR images in Hong Kong and Sao Paulo were tested with dif-
ferent spatial resolutions. Both LULC classification and ISE were conducted 
separately to investigate the effectiveness of different feature combinations. 
Some interesting results were found from the experiments. First, with various 
features extracted from the images, accuracy was improved compared with 
using only the original image data of optical images. This indicates the effec-
tiveness of feature extraction for remote sensing classifications for LULC and 
ISE. Second, with the spectral, texture, and shape feature extraction, the com-
bination of optical and SAR images obtained better results than using optical 
data alone. This is consistent to the results in previous experiments, and also 
proves the effectiveness of the synergistic use of optical and SAR data. Third, 
edge effects located on the image edges of the study areas can be found in 
both the study cases due to the texture extraction using GLCM technique as 
it applies the moving window with a certain window size. The additional 
use of SAN texture and shape features was able to reduce this edge effect to 
some extent. When calculating GLCM features, a fixed size of rectangular 
neighborhood (moving window) is compulsory, and thus provides the edge 
effect on the image boundaries. However, as the size and shape of neighbor-
hood is feasible when calculating SAN features, there is no edge effect on the 
image boundaries. Moreover, the SAN shape feature was able to enhance the 
edge information on the boundaries between different land objects, which 
is the main reason why SAN was able to improve the classification accuracy 
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in the Hong Kong study case. However, shape features are much more sig-
nificant in high spatial resolution images (e.g., SPOT-5 images) than low and 
medium spatial resolution images (e.g., Landsat TM images). In contrast, the 
use of shape features in low and medium resolution images may bring some 
noise and consequently cause some negative impacts. This is exactly the situ-
ation shown in the Sao Paulo study case.
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7
In-Depth Study: ISE Using 
Optical and SAR Data

7.1 � Introduction

Urban impervious surfaces, such as transport-related land (e.g., roads, streets, 
and parking lots) and building rooftops (commercial, residential, and indus-
trial areas), have been widely recognized as important indicators for urban 
environments (Arnold and Gibbons 1996; Hurd and Civco 2004; Weng 2001; 
Weng et al. 2006). Remote sensing has become the major technique to esti-
mate impervious surfaces due to its low cost and convenience for impervious 
surface mapping on local to global scales. Numerous methods have been 
proposed to estimate impervious surfaces from remotely sensed images, 
including subpixel approaches (e.g., the SMA method [Wu and Murray 2003], 
classification and regression tree model [Yang et al. 2003b], ANN [Weng and 
Hu 2008], and SVM [Sun et al. 2011]), and per-pixel approaches such as con-
ventional classification methods (Weng 2012). Recently, a BCI was proposed 
to extract urban impervious surfaces following the VIS conceptual model 
(Deng and Wu 2012). However, most of these approaches were proposed 
with optical remote sensing images, and accurate estimation of impervi-
ous surfaces remains challenging due to the diversity of urban land covers, 
leading to difficulties of separating different land covers with similar spec-
tral signatures (Weng 2012). For instance, dry soils or sands are reported to 
be confused with bright impervious surfaces due to their high reflectance, 
while water and shade tend to be confused with dark impervious surfaces.

The use of multisatellite images is considered as one promising approach 
to improve the accuracy of impervious surfaces (Weng 2012). SAR is able to 
provide useful information about urban areas because it is sensitive to the 
geometric characteristics of urban land surfaces (Calabresi 1996; Henderson 
and Xia 1997; Soergel 2010; Tison et al. 2004; Zhang et al. 2012), and thus SAR 
has been identified as an important source to help extract impervious sur-
faces with optical data (Jiang et al. 2009; Weng 2012; Yang et al. 2009a). Fusion 
between optical and SAR data can be performed on three different levels: the 
pixel level, feature level, and decision level. Pixel-level fusion is reported as 
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inappropriate for SAR images because of speckle noises (Zhang et al. 2010). For 
feature-level fusion, several approaches have been proposed including layer-
stacking and ensemble-learning methods (e.g., bagging, boosting, AdaBoost, 
and RF [Hall and Llinas 1997; Rokach 2010]). The ensemble-​learning meth-
ods can be combined with different classifiers (e.g., ANN and SVM [Rokach 
2010]). For decision-level fusion, various weighting methods (e.g., majority 
voting, entropy weighting, and performance weighting) and the Dempster-
Shafer theory have been applied. However, conventional classifiers with a 
layer-stacking technique are not appropriate in this case as optical reflectance 
and SAR backscattering data do not correlate (Zhang et al. 2010). Among these 
methods, the DT method will be given more attention, while RF has been 
reported to perform extremely well in the fusion of optical and SAR data 
(Waske and van der Linden 2008). However, the potential and effectiveness 
of RF on the fusion between optical and SAR images needs to be explored, 
especially in terms of the estimation of urban impervious surfaces.

This chapter aims to evaluate the effectiveness of RF to synergistically 
combine the optical and SAR data in terms of ISE. A combination of pixel-
level and feature-level fusion methods is adopted. Additionally, the Kappa 
coefficient based on the confusion matrix and OOB error built into the RF 
are compared to assess the effectiveness of fusing optical and SAR images.

7.2 � Study Areas and Datasets

7.2.1 � Study Areas

Two groups of study areas were employed for this comprehensive study. One 
is used to investigate the optimal parameters of the RF algorithm for ISE, and 
the other was used to test the effectiveness of RF for ISE by comparatively 
using two different sets of SAR images.

First, three cities, Guangzhou, Shenzhen, and Hong Kong, located in the 
PRD were selected as the study areas to investigate the optimization of the 
RF algorithm. Detailed introduction to the environment and socio-economic 
background of these three cities can be found in Section 3.1.1.

Second, in order to evaluate the potential of RF algorithm for ISE compre-
hensively, three cities, Shenzhen, Mumbai and Sao Paulo, located in different 
regions of the tropical and subtropical areas, were employed as the study 
areas. As described in Chapter 3:

	 1.	Shenzhen is located in a subtropical humid climate region in the 
Southern hemisphere of the earth.

	 2.	Mumbai is located in a tropical wet and dry climate region and has 
been undergoing dramatic urbanization process. However, there are 
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many problems introduced by the rapid urbanization, such as urban 
fragmentation (Gandy 2008). Therefore, remote sensing of the urban-
ization process of Mumbai would be a good way to monitor the 
urban sprawl in order to improve urban planning and management.

	 3.	Sao Paulo is another subtropical city in Brazil with a subtropical 
humid climate. The Sao Paulo metropolitan area has been under-
going a rapid urbanization process since the twenthieth century. 
However, urbanization has brought significant environmental 
impacts to the ecosystem such as the deforestation of the rainforest 
(Torres et al. 2007). Therefore, estimation of impervious surfaces 
would be beneficial for urban planning and environmental manage-
ment of the city.

7.2.2 � Satellite Data and Coregistration

For the first group of study areas, three different combinations of optical 
and SAR satellite data sets were selected for the three cities (Table 7.1). For 
Guangzhou, a scene of a Landsat ETM+ image and a scene of an ENVISAT 
ASAR WSM image were employed. The ENVISAT ASAR WSM data was 
obtained on the descending direction with V/V polarization and a pixel size 
of 75 m. For Shenzhen, a scene of a SPOT-5 image and a scene of ENVISAT 
ASAR ASA_IMP_1P data were used. The spatial resolution of the ASAR 
IMP data was 12.5 m. For Hong Kong, a SPOT-5 and a SAR image from 
TerraSAR-X were employed. The TSX image used in this study was obtained 
in the StripMap mode with a spatial resolution of 3 m.

The second group of datasets included two types of SAR images for each 
study site (Table 7.2). For Shenzhen, a scene of a SPOT-5 image, a scene of 

TABLE 7.1

Datasets of the First Group for Optimization Investigation 
of the RF Algorithm

Study Site Optical Image SAR Image

Guangzhou Landsat ETM+ ENVISAT ASAR
Shenzhen SPOT-5 ENVISAT ASAR
Hong Kong SPOT-5 ENVISAT ASAR

TABLE 7.2

Datasets of the Second Group for ISE Using Optimized RF

Study Site Optical Image SAR Image SAR Image

Shenzhen SPOT-5 ENVISAT ASAR TerraSAR-X
Mumbai Landsat TM ENVISAT ASAR TerraSAR-X
Sao Paulo Landsat TM ENVISAT ASAR TerraSAR-X
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ENVISAT ASAR ASA_IMP_1P data, and a scene of TerraSAR-X data were 
used. The SPOT-5 image consisted of four bands with 10 m resolution. The 
ENVISAT ASAR image was of V/V polarization with 12.5 m resolution, 
while the TerraSAR-X image was in the StripMap mode with a spatial res-
olution of 3 m. Datasets for Mumbai and Sao Paulo were of the same cat-
egory. For optical data, Landsat TM images with 30 m resolution were used. 
For SAR images, both ENVISAT ASAR and TerraSAR-X images were used. 
The ENVISAT ASAR data was obtained in IMP mode with 12.5 m resolu-
tion, while the TerraSAR-X data was acquired in StripMap mode with 3 m 
resolution.

After preprocessing all the satellite images, both the optical images and 
SAR images were coregistered to the same georeference system of the UTM 
projection (Zone 50 N) and Datum WGS84. Over 20 control points were 
manually selected for each pair of optical and SAR images, and the linear 
transformation approach wass used to conduct the coregistration. The spa-
tial resolutions of the final registered images were determined by the corre-
sponding optical image, which was clearer for human visual interpretation 
and thus easier for the manual selection of control points (Table 7.3). The 
RMS error (RMSE) of the coregistration for each pair of optical and SAR data 
was less than half a pixel.

7.3 � Feature Extraction of Optical and SAR Data

The traditional feature extraction methods introduced in Section 3.5.3.1 were 
employed in this chapter to extraction features from both optical and SAR 
images. If we combine the SAR image as a band to the optical images, then 

TABLE 7.3

Coregistration Design between Optical and SAR Images

Optical Image (Base Image) SAR Image Registered Result

Satellite Sensor
Resolution 

(m)
Satellite 
Sensor

Resolution 
(m)

Resolution
(m)

Landsat TM/ETM+ 30 ENVISAT 
ASAR (WSM)

75 30

Landsat TM/ETM+ 30 ENVISAT 
ASAR (IMP)

12.5 30

Landsat TM/ETM+ 30 TerraSAR-X 3 30
SPOT-5 10 ENVISAT 

ASAR (IMP)
12.5 10

SPOT-5 10 TerraSAR-X 3 10
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we can calculate the total number of images (bands) that are the input of RF. 
Table 7.4 shows the number of bands and number of texture features from 
the first group of datasets, and the total number of images input into the RF 
algorithm. It shows there are 35 variables in total for the Guangzhou case, 25 
variables for Shenzhen, and 25 variables for Hong Kong.

For the second group of datasets, the number of features was also calcu-
lated after applying GLCM texture feature extraction to the optical and SAR 
images. Table 7.5 shows the number of features in different combinations of 
optical and SAR datasets. First, when using only optical images, there are 
only four features (the original multispectral bands) for the Shenzhen data, 
six features for Mumbai, and six features for Sao Paulo. Second, when com-
bined with SAR data (ASAR or TSX), there were 33 features for Shenzhen 
and 49 features for Mumbai and Sao Paulo.

7.4 � Classification Strategy and Accuracy Assessment

Impervious surface mapping at the per-pixel level is actually a classifica-
tion task, where impervious and nonimpervious surfaces are a combination 
of various land cover types. Conventional LULC includes vegetation, urban 
areas, and water, and each land cover type shares similar spectral and spa-
tial characteristics. Therefore, they are often identified individually during 
the classification procedure. However, impervious/nonimpervious surfaces 
consist of various land cover materials. For instance, impervious surfaces 

TABLE 7.4

Number of Bands and Features for the First Group of Datasets

Study Area
Number of 

Bands
Number of Texture 

Feature Images
Total Number of Images 

Input into RF

Guangzhou 7 28 35
Shenzhen 5 20 25
Hong Kong 5 20 25

TABLE 7.5

Number of Features for the Second Group of Datasets

Study Area Optical Optical + ASAR Optical + TSX

Shenzhen 4 33 33
Mumbai 6 49 49
Sao Paulo 6 49 49
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can be made up of dark material (e.g., asphalt and old concrete) and bright 
material (e.g., new concrete and metal), while nonimpervious surfaces are 
also made up of very diverse material (e.g., vegetation, water, and base soils). 
In this study, a two-step approach was employed to estimate impervious sur-
faces. First, six land cover types—dark impervious surfaces, bright imper-
vious surfaces, vegetation, water body, bare soil, and shaded areas—were 
identified with a classification procedure using RF. Second, a combination 
procedure was conducted to combine various land covers into impervious 
and nonimpervious surfaces.

In particular, shaded areas are treated as a single land cover type as they 
often have unique spectral and spatial characteristics. Moreover, since 
shaded areas may be impervious (e.g., roads and rooftops) or nonimpervi-
ous (e.g., greening areas), they are treated as nonimpervious surfaces in 
the second step of combination in this study. Therefore, dark impervi-
ous surfaces and bright impervious surfaces are combined as impervi-
ous surfaces, and vegetation, water, bare soil, and shade are combined as 
nonimpervious surfaces. Additionally, as misclassification may happen 
not only between impervious and nonimpervious land cover types, but 
also among different subtypes of impervious or nonimpervious types, the 
accuracy of classification before and after the combination operation may 
be different. Therefore, in this study, accuracy assessment is conducted on 
the classification results before and after the combination of impervious/
nonimpervious surfaces.

Two accuracy indices are employed to assess the accuracy of ISE. One is 
the OOB error, which is built into the RF algorithm. OOB error is calculated 
based on the training samples, which are separated into two parts in the RF 
algorithm; one part for constructing the RF, and the other for evaluating the 
performance of RF. However, the lowest OOB does not necessarily guarantee 
the best performance of a RF when it is applied to datasets other than the 
training samples. Therefore, the overall accuracy and Kappa coefficient based 
on the confusion matrix are also employed to assess the accuracy (Jensen 
2007). In addition, reference data is collected through visual interpretation 
of the optical and SAR images in the three study areas. Higher-resolution 
satellite images from Google Earth near the corresponding dates are used 
to help the visual interpretation. Moreover, Orthophoto in Hong Kong, with 
0.5 × 0.5 m resolution, was purchased from the Hong Kong governmental 
agency to help improve the quality of visual interpretation of the Hong Kong 
images. Lastly, 1528 samples were collected for the Guangzhou area, 1949 
samples were collected for the Shenzhen area, 1537 samples were collected 
for the Hong Kong area, 1721 samples were collected for the Mumbai area, 
and 1680 samples were collected for the Sao Paulo area. Of these reference 
samples, 50% were used as the training samples to construct the RF and 50% 
were used as the test samples to validate the results and test the effectiveness 
of the method.
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7.5 � Optimization of RF

7.5.1 � Determining the Optimal Number 
of Features in Each Decision Tree

To test the impact of the number of variables selected for splitting each node 
in the decision trees, the number was changed from 1 to the total number of 
variables. Meanwhile, as the number of decision trees in the RF also influ-
ences the results, four levels of the number of decision trees were selected to 
test this influence; that is, 5, 10, 15, and 20, respectively. The Kappa coefficient 
and the OOB error built into the RF were employed to assess the accuracy 
of ISE. Figure 7.1 illustrates the influences of the variation of the number of 
variables under the selected four different numbers of decision trees.

First, for the Kappa coefficient, a similar pattern was observed for all 
four different numbers of decision trees. The Kappa coefficient increased 
quickly at first as the number of selected variables increased, reached a 
peak, and then decreased steadily with slight fluctuation. The peaks of the 
curves are located on different positions for the three study areas. They are 
approximately located on eight variables, six variables, and six variables for 
Guangzhou, Shenzhen, and Hong Kong, respectively. In addition, the dif-
ferent numbers of decision trees can have significant impact on the Kappa 
coefficient. The results demonstrate that more decision trees tend to produce 
a more accurate result, as shown in Figure 7.1 (a, c, and e). However, the gap 
between two neighboring curves became smaller and smaller as the number 
of decision trees increased, and there was a large area of overlay between the 
two curves for 15 and 20 decision trees in all three study cases.

Second, the OOB error varied with the number of decision trees and study 
cases, as shown in Figure 7.1 (b, d, and f). However, the changing pattern 
of the OOB error was different from that of the Kappa coefficient. At the 
beginning stage, the OOB error decreased quickly as the number of selected 
variables increased and reached the lowest point. From then on, an increase 
of the number of variables did not have significant impact on the OOB error, 
which became relatively steady. Therefore, the curves were almost parallel 
in the last part, although the number of decision trees differed. For different 
study cases, the OOB error first reached its lowest point when the number of 
selected variables was 9, 7, and 6, for Guangzhou, Shenzhen, and Hong Kong, 
respectively. However, the number of decision trees had significant impact 
on the accuracy for a given case even though the pattern of each curve was 
similar. More decision trees tended to produce lower OOB curve steady val-
ues. However, the gaps between two neighboring curves also became nar-
rower and narrower when the number of decision trees increased.

As reported in previous research, the number of features in each deci-
sion tree was suggested to be the root of the total number of variables from 
an empirical point of view (Gislason et al. 2006; Stumpf and Kerle 2011). 
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Thus, according to Gislason et al. (2006) and Stumpf and Kerle (2011), the 
optimal number of features in each decision tree should be 6, 5, and 5 for 
Guangzhou, Shenzhen, and Hong Kong, as there are 35, 25, and 25 variables 
in total, respectively (Table 7.4). In this study, the observed optimal num-
ber of features was 8, 6, and 6, considering the Kappa coefficient, while this 
value was 9, 7, and 6, considering the OOB error. This result indicates that 
the optimal number of variables should be a little bit higher than the root of 
the total number of variables. In addition, the optimal numbers of variables 
are not exactly the same by considering the best Kappa coefficient and by 
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FIGURE 7.1
Impacts of different numbers of variables (or features) in each decision tree. (a) Guangzhou: 
Kappa coefficient, (b) Guangzhou: OOB error, (c) Shenzhen: Kappa coefficient, (d) Shenzhen: 
OOB error, (e) Hong Kong: Kappa coefficient, and (f) Hong Kong: OOB error.
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considering the lowest OOB error, even though they are closed. This result 
also indicates that only the built-in accuracy assessment of RF (OOB error) 
may not reflect the real accuracy of the classification result, as the optimal 
number of variables differs based on the Kappa coefficient and OOB error. 
Therefore, additional testing data is needed in order to evaluate the accu-
racy of the classification using RF. In this study, we set the optimal number 
of variables according to the best Kappa coefficient, since additional test-
ing samples are more frequently used to validate the classification results in 
remote sensing applications. Moreover, in order to provide a reference for 
further similar applications, a simple rule of determining the optimal num-
ber of variables in RF is given in Equation 7.1 according to the experiment 
results and discussion.

	 m M= + 1 	 (7.1)

where m is the optimal number of variables to determine the nodes in a deci-
sion tree in RF and M is the total number of variables. The function ⌊x⌋ is 
the largest integer not greater than x. Equation 7.1 indicates that the optimal 
number of variables is a little bigger than the root of the total number of 
variables.

7.5.2 � Determining the Optimal Numbers of Decision Trees in the RF

According to the results of Figure 7.2, the impacts of the number of deci-
sion trees on the classification accuracy can be significant. Even though this 
impact tends to be reduced when the number of decision trees increases, there 
are only four different numbers of decision trees tested, and further experi-
ments are needed in order to gain insight into the impact of this factor. In 
this experiment, the number of decision trees was changed to a larger range 
from 1 to 60. Similarly, four different numbers of variables were selected. 
However, since the total numbers of variables were different for every study 
cases, 3, 6, 9, and 12 variables were selected for Guangzhou, while 2, 5, 8, 
and 11 variables were used for Shenzhen and Hong Kong. Corresponding 
results are illustrated in Figure 7.2, where some interesting findings are 
demonstrated.

First, the Kappa coefficient showed a very tight and similar pattern for the 
four different numbers of variables; that is, it increased quickly as the num-
ber of decision trees went up and then reached a maximal number. From then 
on, the Kappa coefficient was relatively steady when the number of decision 
trees continued to increase. What is more interesting is that even though the 
selected number of variables, the sensors, and the spatial resolutions were 
different in the three study cases, the starting points where the Kappa coef-
ficient became steady are almost the same, which is approximately 20 deci-
sion trees in this research. Nonetheless, the maximal Kappa coefficients are 
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different for the three cases, which were about 0.92 for Guangzhou, 0.95 for 
Shenzhen, and 0.97 for Hong Kong.

Second, the RF built-in accuracy, the OOB error, demonstrated a consistent 
result with the variation of selected number of variables and three study 
cases. For all four different numbers of variables, the changing pattern of 
the curves was very similar and the gap between two curves was extremely 
close. The OOB error first dropped down rapidly and then became steady 
after the number of decision trees reached 20, which is consistent with the 
changing pattern of the Kappa coefficient. Additionally, the steady values of 
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the OOB error were different in the three study cases. The minimal value of 
OOB error was approximately 0.09 for Guangzhou, 0.08 for Shenzhen, and 
0.05 for Hong Kong.

The experiment results indicate that the optimal number decision trees 
is independent of the number of selected variables for splitting each node 
in a decision tree, and it is also independent of the types of sensors and the 
spatial resolutions of remote sensing images. Since the construction of more 
decision trees requires more building time of the RF, the optimal number of 
decision trees should be the first priority when the Kappa coefficient reaches 
its highest point and the OOB error reaches its lowest point. In specific appli-
cation, this optimal number of decision trees can be determined by a statisti-
cal procedure similar to this experiment, and for this study, 20 decision trees 
are best for a RF to combine the optical and SAR data for ISE.

7.6 � ISE with Optimized Models

In order to perform RF to classify impervious surfaces using both optical 
and SAR images, the optimal parameters should be used to configure the RF. 
According to the conclusion of Section 7.5, the optimal number of features (m) 
and the optimal number of decision trees (T) are shown in Table 7.6. Notice 
that the optimal number of features was calculated using Equation 7.1, while 
the optimal number of decision trees was set as 20 according to the experi-
mental results.

Therefore, impervious surfaces were classified using the second group of 
datasets with the optimal parameters in Table 7.6. In order to provide a better 
understanding of the behaviors of the RF algorithm to classify different land 
covers types, the LULC result before combining the impervious and non-
impervious land covers is provided, with the detailed confusion matrices 
shown in Tables 7.7 and 7.8. The comparison of ISE using single optical data 
and combined optical and ASAR data is demonstrated in Table 7.7, while the 
comparison of ISE using single optical data and combined optical and TSX 
data is shown in Table 7.8. The result of using single optical data is listed in 

TABLE 7.6

Parameter Settings for the Number of Features (m) and Decision 
Trees (T)

Study Area

Optical Optical + ASAR Optical + TSX

m T m T m T

Shenzhen 3 20 6 20 6 20
Mumbai 3 20 8 20 8 20
Sao Paulo 3 20 8 20 8 20
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both Tables 7.7 and 7.8 to provide a better comparison of the effectiveness of 
using different SAR images.

Several important findings can be observed in Table 7.7 by combining 
optical and ASAR images. First, in the Shenzhen case, dark impervious sur-
faces (DIS) were easily confused with shade (SHA) when using only an opti-
cal image. For instance, 18 pixels of SHA were mistakenly classified as DIS, 
while 11 pixels of DIS were classified as SHA. Therefore, there are 29 pixels 
in total that are incorrectly classified. Moreover, bright impervious surfaces 
(BIS) and DIS were also confused with each other. However, after combin-
ing the optical and ASAR images, these incorrect pixels were correctly clas-
sified. For instance, only eight pixels of SHA were classified as DIS and eight 
DIS pixels were classified as SHA. The total number misclassified pixels for 

TABLE 7.7

Confusion Matrices for Urban Land Cover Classification (ASAR)

Optical Optical + ASAR

VEG DIS BIS WAT SOI SHA VEG DIS BIS WAT SOI SHA

Shenzhen
VEG 128 2 0 4 0 1 131 1 0 3 0 0
DIS 2 95 17 0 2 11 0 119 0 0 0 8
BIS 0 8 104 0 2 0 0 0 114 0 0 0
WAT 3 0 0 91 0 4 0 0 0 96 0 2
SOI 0 4 8 0 102 0 0 0 1 0 113 0
SHA 2 18 0 2 0 101 1 8 0 0 0 114

OA: 87.34% Kappa: 0.8478 OA: 96.62% Kappa: 0.9594

Mumbai
VEG 177 12 4 0 2 0 185 9 1 0 0 0
DIS 21 188 10 0 4 0 8 211 4 0 0 0
BIS 2 26 125 0 3 0 0 8 148 0 0 0
WAT 1 0 0 148 0 0 0 0 0 149 0 0
SOI 3 9 12 0 113 0 5 4 2 0 126 0
SHA 0 0 0 0 0 0 0 0 0 0 0 0

OA: 87.33% Kappa: 0.8398 OA: 95.89% Kappa: 0.9507

Sao Paulo
VEG 244 2 0 0 1 0 247 0 0 0 0 0
DIS 11 244 2 2 6 0 3 254 1 0 7 0
BIS 2 8 126 0 7 0 0 1 140 0 2 0
WAT 0 0 0 141 0 0 0 0 0 141 0 0
SOI 1 9 0 0 34 0 1 7 1 0 35 0
SHA 0 0 0 0 0 0 0 0 0 0 0 0

OA: 93.93% Kappa: 0.9194 OA: 97.26% Kappa: 0.9637

Note:	 BIS = bright impervious surfaces; DIS = dark impervious surfaces; OA = overall accuracy; 
SHA = shaded area; SOI = soil; VEG = vegetation; WAT = water.
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these two classes was reduced to 16. The confusion between DIS and BIS 
was noticeably reduced with no incorrectly classified pixels. As a result, 
with the additional use of an ASAR image, the overall accuracy (OA) was 
improved from 87.34% to 96.62%, while the Kappa coefficient increased from 
0.8478 to 0.9594. Second, in the Mumbai case, DIS seemed to be more easily 
confused with vegetation (VEG), while BIS was easily confused with bare 
soil (SOI). Before combing optical and ASAR data, 12 pixels of VEG were 
classified as DIS and 21 pixels of DIS were classified as VEG. In addition, 12 
pixels of BIS were mistakenly classified as BIS. The confusion between DIS 
and BIS can also be easily observed in Table 7.7 with 36 (= 26 + 10) incor-
rect classified pixels. These mistakes were dramatically reduced after com-
bining the optical and ASAR data, with only several misclassified pixels 

TABLE 7.8

Confusion Matrices for Urban Land Cover Classification (TSX)

Optical Optical + TSX

VEG DIS BIS WAT SOI SHA VEG DIS BIS WAT SOI SHA

Shenzhen
VEG 128 2 0 4 0 1 132 1 0 2 0 0
DIS 2 95 17 0 2 11 0 120 0 0 0 7
BIS 0 8 104 0 2 0 0 0 114 0 0 0
WAT 3 0 0 91 0 4 0 0 0 98 0 0
SOI 0 4 8 0 102 0 0 0 0 0 114 0
SHA 2 18 0 2 0 101 1 9 0 0 0 113

OA: 87.34% Kappa: 0.8478 OA: 97.19% Kappa: 0.9662

Mumbai
VEG 177 12 4 0 2 0 187 8 0 0 0 0
DIS 21 188 10 0 4 0 11 202 9 0 1 0
BIS 2 26 125 0 3 0 3 8 145 0 0 0
WAT 1 0 0 148 0 0 1 0 0 148 0 0
SOI 3 9 12 0 113 0 4 4 3 0 126 0
SHA 0 0 0 0 0 0 0 0 0 0 0 0

OA: 87.33% Kappa: 0.8398 OA: 93.95% Kappa: 0.9237

Sao Paulo
VEG 244 2 0 0 1 0 245 0 0 0 2 0
DIS 11 244 2 2 6 0 1 257 0 0 7 0
BIS 2 8 126 0 7 0 0 5 135 0 3 0
WAT 0 0 0 141 0 0 0 0 0 141 0 0
SOI 1 9 0 0 34 0 1 6 2 0 35 0
SHA 0 0 0 0 0 0 0 0 0 0 0 0

OA: 93.93% Kappa: 0.9194 OA: 96.79% Kappa: 0.9574

Note:	 BIS = bright impervious surfaces; DIS = dark impervious surfaces; OA = overall accuracy; 
SHA = shaded area; SOI = soil; VEG = vegetation; WAT = water.
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between these classes. For instance, nine pixels of VEG were misclassified 
as DIS and eight pixels of DIS were misclassified as VEG. The misclassifi-
cation between DIS and BIS was reduced from 36 to 12 pixels. Confusion 
between SOI and BIS was also greatly reduced with only five misclassified 
pixels. In general, OA increased from 87.33% to 95.89% and the Kappa coef-
ficient increased from 0.8398 to 0.9507. Third, in the Sao Paulo case, the eas-
ily confused classes are between VEG and DIS, between SOI and DIS, and 
between SHA and the two impervious surface classes. While using optical 
data alone, 11 DIS pixels were classified as VEG and nine SOI pixels were 
classified as DIS, 13 (= 6 + 7) pixels of impervious surfaces were incorrectly 
classified as SHA. After combining optical and ASAR images, only three 
VEG pixels and seven SOI pixels were incorrectly classified. As a result, OA 
increased from 93.93% to 97.26% together with the Kappa coefficient, which 
increased from 0.9194 to 0.9637.

When using TSX data instead of ASAR data to be combined with opti-
cal images, different characteristics could be found, as seen in Table 7.8. In 
Shenzhen, the improvement of using TSX data is noticeable. Only nine pix-
els of SHA were misclassified as DIS, seven pixels of DIS as SHA, two pixels 
of VEG as WAT, one pixel of VEG as DIS, and one pixel of SHA as VEG. 
The OA increased from 87.34% to 97.19%, which is higher than that of com-
bining optical and ASAR data (96.62%). The Kappa coefficient improved 
from 0.8378 to 0.9662, higher than using ASAR data (0.9594). In Mumbai, 
improvement could also be observed using TSX data. Misclassification 
between DIS and VEG was reduced from 33 (= 21 + 12) pixels to 19 (= 11 + 8) 
pixels. The confusion between DIS and BIS was also reduced. Nevertheless, 
this improvement was less than that of using ASAR data. Using TSX data, 
the OA was improved from 87.33% to 93.95%, which was 95.89% using 
ASAR data. The Kappa coefficient increased from 0.8398 to 0.9237, which 
was 0.9507 using ASAR data. In Sao Paulo, after combining optical and 
TSX images, only one DIS pixel and six SOI pixels were incorrectly classi-
fied to VEG and DIS, respectively. The confusion between DIS and BIS was 
reduced from eight pixels to five pixels. As a result, the OA increased from 
93.93% to 96.79%, lower than that of using ASAR data (97.26%). The Kappa 
coefficient increased from 0.9194 to 0.9574, which was lower than that of 
using ASAR data (0.9637).

In general, several important conclusions can be drawn from the above 
results. First, when using different combination of optical and SAR images, 
the land cover classes that are easily confused are not necessarily the same. 
This may be caused by the types of sensors, the spatial resolutions of the 
optical and SAR images, and climate of the study areas. For instance, for 
Mumbai, which is located in a tropical area, the confusion between impervi-
ous surfaces and other classes are higher than in other cities. Second, even 
though the easily confused classes are not always the same in different 
study cases, the effectiveness of combining the optical and SAR images can 
be verified and confirmed with an increase of both overall accuracy and 
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Kappa coefficient. Third, even though TSX data has a much higher spatial 
resolution than ASAR data, the improvement of using TSX data may not be 
necessarily higher than using ASAR data. In contrast, combining optical 
and ASAR data tends to obtain better results, such as in the Mumbai and 
Sao Paulo cases.

Then, in the second step, DIS and BIS were combined as impervious sur-
faces (IS), while VEG, WAT, SOI, and SHA were combined as nonimpervious 
surfaces (NIS). To better understand the results quantitatively, new confu-
sion matrices are computed in Table 7.9. The results in Table 7.9 are generally 
consistent with those in Tables 7.7 and 7.8, while the OA and Kappa coefficient 
are generally higher, since the confusion between two impervious classes or 
two nonimpervious classes is removed after the second step of combination.

Some interesting results can be found in Table 7.9. First, it demonstrates that 
the misclassification between IS and NIS was dramatically reduced by com-
bining the optical and SAR images for Shenzhen, Mumbai, and Sao Paulo, 
using either ASAR or TSX images. Second, with either ASAR or TSX data, 
combining optical and SAR data improved the ISE results compared with 
using single optical data, which can be observed from the OA and Kappa 
coefficients in the three study cases. Third, even though combining optical 
and TSX data yielded less improvement than combining optical and ASAR 
data in the LULC classification result, this does not guarantee better results 
after combining the subtypes of IS and NIS. For instance, in Sao Paulo, the 

TABLE 7.9

Confusion Matrices for Impervious Surface Mapping

Optical Optical + ASAR Optical + TSX

IS NIS IS NIS IS NIS

Shenzhen
IS 224 17 233 8 234 7
NIS 32 438 10 460 10 460

OA: 93.11%
Kappa: 0.8485

OA: 97.47%
Kappa: 0.9436

OA: 97.61%
Kappa: 0.9468

Mumbai
IS 349 30 371 8 364 15
NIS 37 444 16 465 15 466

OA: 92.21%
Kappa: 0.8423

OA: 97.21%
Kappa: 0.9435

OA: 96.51%
Kappa: 0.9292

Sao Paulo
IS 380 28 396 12 397 11
NIS 11 421 8 424 8 424

OA: 95.36%
Kappa: 0.9070

OA: 97.62%
Kappa: 0.9523

OA: 97.74%
Kappa: 0.9547

Note:	 IS = impervious surfaces; NIS = nonimpervious surfaces; OA = overall accuracy.
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OA was improved to 97.74% from 95.36% with the additional use of TSX data, 
while the Kappa value increased to 0.9547 from 0.9070. This improvement 
is higher than that of using ASAR data. However, in the case of Mumbai, 
improvement by using TSX data was still not as high as by using ASAR data 
before and after combining IS and NIS classes.

Generally, backscattering information in SAR imagery can contribute to 
improving the accuracy of ISE in three different ways. First, since microwaves 
are very sensitive to the geometric configurations of land surfaces, the back-
scattering of microwaves carries much information about the geometric fea-
tures in urban areas, such as the surface roughness determined by buildings 
and transportation networks. Therefore, SAR images add more distinguish-
able information between impervious surfaces and nonimpervious surfaces. 
Second, microwaves are also sensitive to moisture, including the moisture 
in bare soil and the water content in vegetation. This characteristic makes it 
easier to separate bare soils and bright impervious surfaces in SAR imagery 
by reducing the spectral confusion using optical images alone, which is the 
situation in this study area. Third, SAR remote sensing often works in a side-
looking way, leading to a different view angle from that of optical remote 
sensing. As a result, shaded areas in optical images are often not shaded in 
the corresponding SAR images, and thus land surface information under the 
shade in optical images can be seen in SAR images. Therefore, the spectral 
confusion between shaded areas and dark impervious surfaces in optical 
images can be significantly reduced with the additional use of SAR images.

7.7 � Discussion and Implications

Impervious surfaces are attracting increasing attention because they are 
not only significant in the urban environment, but also an indicator of the 
urbanization. Nevertheless, accurate mapping of urban impervious surfaces 
remains challenging due to their spectral diversity. This chapter presented 
our efforts to synergistically combine the two data sources to improve the 
mapping of impervious surfaces using the RF algorithm. Four combinations 
of optical and SAR images, Landsat TM/ETM+ and ENVISAT ASAR, Landsat 
TM/ETM+ and TerraSAR-X, SPOT-5 and ENVISAR ASAR, and SPOT-5 and 
TerraSAR-X, were selected in various study areas including Guangzhou, 
Shenzhen, Hong Kong, Mumbai, and Sao Paulo to validate the effectiveness 
of the methods in this study.

Results indicate some interesting findings about the application of RF to 
the fusion of optical and SAR data. First, the built-in OOB error is insuf-
ficient for accuracy assessment, and assessment with additional refer-
ence data is required for combining optical and SAR images using RF. In 
this study, the OA and Kappa coefficient were employed as an additional 
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assessment. The OA and Kappa values shown a consistent pattern with 
only a slight difference. Second, the optimal number of variables (m) for 
splitting the decision tree nodes in RF should be somewhat different from 
the previously reported principle, which indicates m as the root number of 
the total variables. In this study, an empirical relationship (Equation 7.1) 
was provided for determining the parameter m. Third, the optimal num-
ber of decision trees (T) in RF is not sensitive to the resolutions and sensor 
types of optical and SAR images, and the optimal T in this study is 20. 
Fourth, the combined use of optical and SAR images using RF is effective 
to improve land cover classification and ISE by reducing the confusions 
between bright impervious surfaces and bare soil, dark impervious sur-
faces and bare soil, as well as shaded areas and water surfaces. Fifth, two 
SAR datasets, ASAR and TSX, were comparatively employed in this study, 
with interesting results indicating that higher-resolution SAR data does 
not guarantee greater improvement compared to lower-resolution SAR 
data. Moreover, the effectiveness of various-resolution SAR data may also 
depend on the classification modes such as the LULC classification and 
impervious surface mapping. Lastly, even though the easily confused land 
classes tend to be different in different image resolutions, the effectiveness 
of combining optical and SAR images is consistent. This improvement is 
more noticeable for the fusion of optical and SAR images with lower resolu-
tions. The conclusions of this study should serve as an important reference 
for further applications of optical and SAR images, and as a potential refer-
ence for the applications of RF to the fusion of other multisource remote 
sensing data.
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8
Conclusions and Recommendations

Impervious surfaces have been widely recognized as an important land 
surface component due to their significance in both urban environmen-
tal and socioeconomic studies. Therefore, the estimation and mapping of 
impervious surfaces have become increasingly important all over the world. 
However, accurate estimation of impervious surfaces is still challenging 
due to the diversity of urban land covers, which produce various spectral 
confusions between different land surface materials. Moreover, most of the 
previous research focused on urbanized areas in temperate latitude regions 
where many important cities and metropolitans are located. Consequently, 
the accurate estimation of impervious surfaces in tropical and subtropical 
regions, where the land cover diversity is unique due to unique seasonal 
climatology and plant phenology, becomes even more challenging than in 
other regions of the world. The main objective of this book has been to pro-
mote the combined use of optical and SAR images to improve the accuracy of 
ISE in tropical and subtropical regions. The seasonal characteristics of land 
covers and their impact on ISE in tropical and subtropical regions have been 
investigated. This section summarizes the major findings and conclusions of 
this research, highlights the limitations of the study, and suggests possible 
research topics for future research.

8.1 � Conclusions

8.1.1 � Seasonal Effects of ISE in Tropical and Subtropical Areas

Accurate ISE remains challenging due to the diversity of impervious sur-
faces, and seasonal effects from the climate zones is one of the key issues that 
influences the accurate estimation of impervious surfaces. In this study, four 
scenes of Landsat TM/ETM+ images were carefully chosen for four differ-
ent seasons in four typical cities, Guangzhou, Mumbai, Sao Paulo, and Cape 
Town, from tropical and subtropical areas, and two classification methods, 
ANN and SVM, were employed to extract the impervious surfaces from the 
images at the pixel level. The experimental results demonstrate quite a unique 
view of seasonal effects in tropical and subtropical areas that is different 
from those in midlatitude or temperate areas according to previous research 
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(Weng et al. 2009; Wu and Yuan 2007). According to the results, in tropical 
and subtropical regions, winter and spring are generally the better seasons 
to estimate impervious surfaces from optical remote sensing images com-
pared with summer and autumn. Winter and spring are generally the dry 
seasons in tropical and subtropical regions and the temperature is relatively 
lower. With a specific investigation in Guangzhou, we found that in winter, 
there are not many clouds and most of the VSAs are not filled with water. 
Even though more bare soils in the VSAs are exposed, they can be easily 
identified because most are actually not dry soils as in the midlatitude areas. 
Therefore, satellite images are the most appropriate for estimating impervi-
ous surfaces. On the other hand, autumn images had the lowest accuracy of 
impervious surfaces due to the cloud coverage and water in VSAs. Autumn 
is a rainy season in a subtropical monsoon region, for which clouds occur 
very often and VSAs are always filled with water. Consequently, clouds are 
confused with bright impervious surfaces due to their similar high reflec-
tance, and more water in VSAs is confused with dark impervious surfaces 
due to their similar low reflectance.

The seasonal sensitivity of the two methods was also compared. Both 
ANN and SVM methods showed general consistency in the accuracy of the 
seasonal changes. ANN was somewhat more stable as its accuracy changed 
less than that obtained using SVM. However, both methods indicated that 
wintertime is the best season for ISE with satellite images in subtropical 
monsoon regions. The limitations of this study mainly come from the meth-
odology, which is generally based on a per-pixel level. In urban and subur-
ban areas, one pixel with a size of 30 × 30 m does not necessarily include 
only impervious materials or nonimpervious materials (Weng 2012; Wu and 
Murray 2003). In this case, the use of per-pixel methods would obtain a result 
with lower accuracy.

8.1.2 � Feature Extraction Methods

This book has proposed a novel feature extraction technique based on SAN 
to incorporate the advantages of human vision into the process of remote 
sensing images. Methodologies on how to determine the SAN of each pixel, 
how to extract the textural features and geometric features from each SAN, 
and how to integrate all these features, have been presented and analyzed 
in detail. Lastly, a set of experiments was designed to conduct the SAN fea-
ture extraction framework and applied to classify two study areas located 
in Hong Kong and Cape Town. Additional quantitative analysis was per-
formed to evaluate related parameters to determine the SAN and to com-
pare the influences of different features, such as the spectral feature, color 
feature, and SAN-integrated features, on the accuracy of classification. Some 
interesting results were found from the experiments. First, with various fea-
tures extracted from the images, the accuracy could be improved compared 
with using only the original image data of optical images. This indicates 
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the effectiveness of feature extraction for remote sensing classifications for 
LULC and ISE. Second, with the spectral, texture,and shape feature extrac-
tion, the combination of optical and SAR images obtained better results than 
by using optical data alone. This is consistent with the results in previous 
experiments, and also proves the effectiveness of the synergistic use of opti-
cal and SAR data. Third, edge effects located on the image edges can be 
found in all study cases in Chapters 6 and 7 due to the texture extraction 
based on the GLCM technique as it applies a moving window with a certain 
window size. The additional use of SAN texture and shape features reduced 
this edge effect to some extent. Moreover, the SAN shape feature was able 
to enhance the edge information on the boundaries between different land 
objects, which is the main reason why SAN was able to improve the classifi-
cation accuracy in the Hong Kong study case. However, the SAN texture and 
shape feature did not necessarily improve the classification results because 
it may produce some noises depending on the land cover diversity of the 
study areas.

8.1.3 � Comparison between Optical and SAR Data

This study compares optical and SAR data in terms of estimation of impervi-
ous surfaces using a single data source. Experimental results in four different 
cities of the tropical and subtropical regions show some important findings 
for both the advantages and disadvantages of each data source. First, in all 
the cases, using optical images alone provided a generally better result than 
using SAR data alone. The difference of overall accuracy varied from about 
7% to about 29%, while the difference of the Kappa coefficient varied from 
about 11% to about 60%. The results demonstrate that using optical image 
alone provides generally better identification of vegetation, dark impervious 
surfaces, and bright impervious surfaces, even though there are spectral con-
fusions between impervious surfaces and vegetation or bare soils. However, 
due to the speckle phenomenon of SAR images, the ISE results using SAR 
data alone were affected by numerous noises, especially on the boundaries 
between different land covers. These noises can influence the classification 
results dramatically and lower the accuracy depending on the  complex-
ity of land cover patterns. In particular, linear features such as roads and 
bridges cannot be correctly identified using only SAR data. Second, SAR 
data was able to show some advantages for ISE compared with optical data. 
For instance, the separation between bright impervious surfaces and bare 
soils could be reduced due to their different backscattering behaviors with 
microwave remote sensing. In addition, spectral confusions between dark 
impervious surfaces and vegetation could be reduced to some extent in the 
SAR images. Therefore, optical images and SAR images can provide comple-
mentary information for each other to improve the estimation of impervious 
surfaces. Third, by comparing the ANN and SVM classifiers, both methods 
demonstrated similar results when applied to the same dataset in the same 
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study area. The difference of accuracy between the results from ANN and 
SVM are less than 1%. In general, our experimental results showed that SVM 
is more appropriate for using optical data alone, while ANN provided better 
results when using SAR data alone. However, this parameter is not so strong 
for all cases and it should depend on the land cover diversity in a specific 
application.

8.1.4 � Fusion Level and Fusion Methods

This book has compared three different fusion levels, pixel level, feature 
level, and combinational level, regarding optical and SAR images in terms 
of ISE. Spectral and texture features were extracted from the optical and 
SAR images, as well as the detailed design of fusion strategies for pixel-, 
feature-, and combinational-level fusions. SVM was then employed to con-
duct the fusion operation. The experimental results showed some impor-
tant conclusions for selecting the fusion strategy of fusing optical and SAR 
data. First, pixel-level fusion is not appropriate for optical and SAR image 
fusion, as it reduces the accuracy compared to the single use of optical data. 
This result was consistent in the four study cases. Second, both feature-
level and combinational-level fusion are able to improve the accuracy of 
ISE by fusing optical and SAR data. However, whether feature-level or 
combinational-level fusion is better for the optical SAR fusion may depend 
on specific cases in terms of the land cover diversity and complexity. The 
resolutions of optical and SAR images may also influence the selection of 
an appropriate fusion strategy. Generally, the experiment demonstrated that 
combinational-level fusion is more suitable for ISE of urban areas with less 
diverse land covers, while feature-level fusion is more appropriate for urban 
areas with more diverse land covers.

8.2 � Future Directions

8.2.1 � Feature Extraction

Feature extraction is an important procedure for the processing of both opti-
cal and SAR images for accurate estimation of impervious surfaces, especially 
when high spatial resolution images are employed. The feature extraction 
approach based on SAN proposed in this book is efficient in extracting tex-
ture and shape features from high-resolution satellite images. However, the 
current research only applied it to the optical images. Texture features of 
SAR images are also very challenging according to the existing literature, 
and SAN-based feature extraction approach should also be applied to extract 
texture features from SAR images. However, due to the speckles in SAR 
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images, the determination of SAN becomes especially difficult for SAR data. 
To address this problem, one possible solution is to use corresponding opti-
cal images (by coregistration) to determine the SAN, and then SAN-based 
texture features can be calculated on the SAR images.

8.2.2 � Study Area Selection and Design

Six study sites, located in Guangzhou, Shenzhen, Hong Kong, Sao Paulo, 
Mumbai, and Cape Town, were selected for this research, and the corre-
sponding Landsat TM, SPOT-5, ENVISAT ASAR, and TerraSAR-X images 
were used. Moreover, several experiments were designed, including the 
assessment of seasonal effects, the assessment of SAN-based feature extrac-
tion, the comparison between optical and SAR data, and the fusion of opti-
cal and SAR images. However, only one or two datasets were applied to 
each experiment due to the time limitation for preparing this research. Even 
though the results are consistent in all the experiments, from a statistical 
point of view, all datasets should be applied to every experiment for a more 
convincing result. Additionally, all the study sites selected in this research 
are from tropical and subtropical regions. In order to better understand the 
characteristics of ISE in tropical and subtropical urban areas, the most fre-
quently studied regions, the temperate areas, should be compared to inves-
tigate the climatic and phenology influences, which is a topic for future 
research.

8.2.3 � Validation with In Situ Data

Field data about various urban land covers was collected to help validate 
the visual interpretation in digital orthophoto. However, it is used only in 
a qualitative way. From the nature of this study, which focused on the com-
bined use of optical and SAR data for the estimation of impervious surfaces, 
the current work is reasonable as the digital orthophoto is only used to help 
validate the visual interpretation for training and testing data selection. 
However, in future work, quantitative analysis will be required for the clas-
sification of digital orthophoto, which is important for subpixel analysis and 
assessment of classification results from satellite images.

8.2.4 � Fusion Level and Strategy

Fusion level is an important factor when fusing multiple sources of satellite 
images. There are generally four different fusion levels for image fusion: the 
pixel level, the feature level, combinational level, and the decision level. In 
this book, the pixel level, feature level, and combinational level were com-
pared. We found that pixel-level fusion is not appropriate for optical and SAR 
image fusion, as it reduces the accuracy compared to the single use of opti-
cal data. This result is consistent in the four study cases. Additionally, both 
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feature-level and combinational-level fusion are able to improve the accu-
racy of ISE by fusing optical and SAR data. However, whether feature-level 
or combinational-level fusion is better for optical SAR fusion may depend on 
specific cases in terms of the land cover diversity and complexity. However, 
decision-level fusion was not implemented in this study since the decision 
rules remain very difficult to design for decision fusion. Nevertheless, the 
decision level, which is promising from examining the existing literature, 
should be investigated more by designing sophisticated decision rules in 
future studies. One possible solution for designing the decision rules is to 
simulate the reasoning procedure of human psychological cognition to take 
advantage of the great reasoning ability of human beings.

8.2.5 � Fusion Methods

The fusion method is the conduction of fusion at a certain fusion level. 
Generally speaking, multisource data fusion refers to the combinational use 
of multiple data sources. That is to say, when we use multiple satellite images 
at the same time, we are fusing them. Therefore, whether a procedure can 
be called multisource data fusion depends not on what fusion methods are 
used, but on what data sources are used. Nevertheless, one challenge in mul-
tisource data fusion is how we fuse them, which means what fusion methods 
are used. In this book, three fusion methods are employed, including ANN, 
SVM, and RF. These methods have been applied to numerous application 
fields such as remote sensing classification, and they are known as the most 
popular nonparametric machine-learning approaches. However, from the 
view of multisource data fusion, these three methods have different behav-
iors when conducting the fusion procedure. For ANN, all the data sources 
are input into the input-layer nodes to determine the final results. That is, 
every data source is treated equally and they are used in the whole fusion 
procedure. For SVM, all the data sources are considered to determine the 
support vectors, which determine the final results. In this procedure, even 
though all data sources are treated equally when searching the support vec-
tors, they are not necessarily selected as support vectors, and thus may not 
influence the final result equally. This is a good feature for the fusion of 
optical and SAR data since the two data sources are very different and they 
should not be treated in the same way (Soergel 2010). The third method is 
RF, which is similar to SVM in that all data sources are not necessarily used 
to determine the final results. A random selection of variables (from mul-
tiple sources) is conducted during the stage of building up the RF. The RF 
algorithm would evaluate the importance of each variable (e.g., Gini index) 
to determine whether it should be selected to form a tree node. In this way, 
each data source is treated differently in the RF method. This is actually the 
reason why RF obtained the best results in our study.

However, there are some challenging problems in the fusion of multiple sat-
ellite images, such as uncertainty. For instance, cloud coverage is a problem 
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in optical images. When fusing two images of optical and SAR images with 
some clouds in the optical image, the information extracted from the optical 
image should be accompanied by some uncertainty depending on the occur-
rence and thickness of the clouds. However, this feature cannot be described 
in the fusion methods of ANN, SVM, and RF. Therefore, more advanced 
methods should be designed and applied to address this problem. One pos-
sible solution is to conduct decision fusion by designing decision rules to 
consider SAR data more than optical data in cloudy areas. Another possible 
way is to use incomplete data fusion theory and treat the cloudy areas as 
incomplete data by masking them out. Both of these approaches should be 
part of future research.
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Appendix: Codes for Determining SAN

function [neighbor, peri] = SAN(img, g, i, j)
% This function is to calculate the SAN of a pixel at img(i,j)
% img is a false-color RGB image
% g is the color feature of img
% neighbor is the SAN of img(i,j) in one dimension
% peri is the perimeter of neighbor

global image			   % a false-color RGB image
global N_vector		  % one dimension SAN
global N			   % number of pixels in the SAN
global perimeter;		  % perimeter of the SAN
global Nx;			   %(Nx,Ny)is the size of image
global Ny;
global dd;			   % distance between two pixels
global window_size;		 % size of the viewport

image = img;
[Nx,Ny] = size(g);

N_vector = zeros(1,10000); % �suppose the maximal SAN size is 
10000

N = 0;
perimeter = 0;
dd = 100;			   % �initialize of the distance 

between two pixels
window_size = 11;		  % define the size of viewport

centre = g(i,j);
setNeighbor(i,j,g,centre,i,j);

neighbor = N_vector(1:N);
peri = perimeter;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
function setNeighbor(i,j,g,centre,x,y)
global image;
global N_vector	
global N	
global perimeter
global Nx;
global Ny;
global dd;
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global window_size;	

bool = (i > (x-window_size)) && (j > (y-window_size)) && ...
	 (i < (x+window_size)) && (j < (y+window_size)) ...
	 && (i > 0) && (j > 0);
bool1 =  (image(i,j,1) == 255);
if(bool1 > 0) 
	 bool1 = 0;
else
	 bool1 = 1;
end

if(i<Nx && j<Ny && bool && bool1)
	 dd = abs(g(i,j)-centre);
end

if(dd<0.2 && i<Nx && j<Ny && bool && bool1)
	 N = N + 1;
	 N_vector(N) = image(i,j,1); 

	 image(i,j,1) = 255;
	 image(i,j,2) = 0;
	 image(i,j,3) = 0;

	 setNeighbor(i+1,j,g,centre,x,y);
	 if (i>2) setNeighbor(i-1,j,g,centre,x,y); end
	 setNeighbor(i,j+1,g,centre,x,y);
	 if (j>2) setNeighbor(i,j-1,g,centre,x,y); end
	 setNeighbor(i+1,j+1,g,centre,x,y);
	 if (i>2) setNeighbor(i-1,j+1,g,centre,x,y); end
	 if (i>2 && j>2) setNeighbor(i-1,j-1,g,centre,x,y); end
	 if (j>2) setNeighbor(i+1,j-1,g,centre,x,y); end
else
	 perimeter = perimeter + 1;
end
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